首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
文 [1]证明了有心圆锥曲线任一弦的斜率和弦中点与椭圆中心连线的斜率 (均存在且不为零 )之积为一定值 ,受此启发 ,本文给出抛物线的有关斜率的一对定值 ,并举例说明其在解题中的应用 ,聊作文[1]的补缀 .定理 1 设M (x0 ,y0 )是抛物线 y2 =2 px (p>0 )上的定点 ,A、B是抛物线上的两动点 ,若kMA·kMB =t (t≠ 0 ) ,则直线AB过定点x0 - 2pt ,- y0 .证明 设A(x1 ,y1 )、B(x2 ,y2 ) ,则有y21 =2 px1 ( 1) ,y22 =2 px2 ( 2 ) ,y20 =2 px0 ( 3) .( 1) - ( 2 )得  ( y1 y2 ) ( y1 - y2 ) =2 p(x1…  相似文献   

2.
本文给出圆锥曲线弦的中点坐标与该弦的垂直平分线的截距之间的关系 ,并举例说明它的应用 .定理 设圆锥曲线中与坐标轴不平行的弦P1P2 的中点为M (x0 ,y0 ) ,该弦的垂直平分线l与x轴的横截距为a ,与 y轴的纵截距为b .(1)对于椭圆或双曲线  x2A + y2B =1  (A >0 ,B >0或AB <0 ) ,有 a=A-BA x0 , b=B-AB y0 ;(2 ) 对于抛物线 y2 =2 px  (p ≠ 0 ) ,有  a=x0 + p , b=y0p(x0 + p) ;(3)对于抛物线x2 =2 py  (p≠ 0 ) ,有  a=x0p(y0 + p) , b =y0 + p .证明  (1) 设P1(x1…  相似文献   

3.
下面是 2 0 0 2年的一道高考题 :设A、B是双曲线x2 -y22 =1上的两点 ,点N( 1 ,2 )是线段AB的中点 .( 1 )求直线AB的方程 ;( 2 )如果线段AB的垂直平分线与双曲线交于C、D两点 ,那么A、B、C、D 4点是否共圆 ?第 ( 1 )小题 .应用作差法和中点坐标公式易求得直线AB的斜率k=1 ,方程为x -y+1 =0 .第 ( 2 )小题 ,解法很多 ,为简化解题过程 ,可绕过求交点 ,直接建立圆的方程 ,证明 4点在这个圆上 .∵CD ⊥AB ,且过点N( 1 ,2 ) ,∴CD的方程为x +y-3 =0把直线AB、CD看成二次曲线 (x-y+1 ) (x +y-3 ) =0 ,这样…  相似文献   

4.
在抛物线与直线的关系中 ,过抛物线焦点的直线与抛物线的关系尤为重要 ,这是因为在这一关系中具有一些很有用的性质 ,这些性质常常是高考命题的切入点 .本文对此作一些探讨 .不妨设抛物线方程为 y2 =2 px( p>0 ) ,则焦点F p2 ,0 ,准线l的方程 :x=-p2 .过焦点F的直线交抛物线于A(x1 ,y1 )、B(x2 ,y2 )两点 ,又作AA1 ⊥l,BB1 ⊥l,垂足分别为A1 、B1 .AB⊥x轴时 ,x1 =x2 =p2 ,A p2 ,p ,B p2 ,-p ,此时弦AB叫抛物线的通径 ,它的长|AB| =2 p .AB与x轴不垂直也不平行时 ,设弦AB所在直线的斜率为…  相似文献   

5.
有关圆锥曲线弦的二端点与原点连线的斜率问题 ,涉及解析几何中许多重要的知识点 ,在各种考试的试题中经常出现 .若用常规方法解决 ,运算量大、过程冗繁 .本文通过实例介绍这类问题的一种简捷解法 .例 1  (1993年上海市高考试题 )抛物线 y=- 12 x2 与过点M(0 ,- 1)的直线l相交于A、B两点 ,O为坐标原点 .若直线OA与OB的斜率之和为1,求直线l的方程 .解 设直线l的方程为 y =kx- 1,即 1=kx-y .代入抛物线方程 2 y· 1+x2 =0得    2y(kx- y) +x2 =0 .整理后两边同时除以x2 ,有   2 (yx) 2 - 2k· (yx) - …  相似文献   

6.
定理 过抛物线y2 =2px(p >0 )对称轴上一定点M(x0 ,0 )作一条直线交抛物线于A、B两点 ,若两交点的纵坐标为y1、y2 ,则y1y2 =- 2px0 (定值 ) .证明 设直线AB方程为x=my+x0 ,代入抛物线方程y2 =2px ,得y2 2mpy - 2px2 =0 .因为AB的纵坐标为y1、y2 ,由韦达定理得   y1y2 =- 2px0 .特别地 ,当M(p2 ,0 )时 ,y1y2 =-p2 .(高中《解析几何》课本 10 1页第 8题 )逆定理 一条直线和抛物线y2 =2px(p >0 )相交 ,若两交点的纵坐标为y1、y2 ,且满足y1y2 =A(定值 ) ,则这条直线恒过定点 (- A2…  相似文献   

7.
函数是初中数学的重要内容 ,也是中考命题的热点 ,特别是两个函数的综合问题更显重要 .现结合中考试题进行分析 ,供参考 .图 1例 1 如图 1,双曲线y =kx与直线y =-x -k相交于A ,过A作x轴的垂线AB (B是垂足 ) .如果S△ABO=2 ,求 :( 1)两个函数的解析式 ;( 2 )S△ABC.( 1998年甘肃省中考题 )解  ( 1)由S△ABO=2知 ,|k|=|xy|=4.又k <0 ,∴ k =-4 .∴ 双曲线的解析式为y =-4x,直线的解析式为y =-x +4.( 2 )由方程组 y =-4x,y =-x +4,得A( 2 -2 2 ,2 +2 2 ) .又C( 4 ,0 ) ,B( 2 -2 2 ,0 ) ,∴ BC …  相似文献   

8.
本文从一个定理的证明出发 ,利用数学知识探讨椭圆的光学性质 .定理 :圆锥曲线E :mx2 +ny2 =1(m >0 ,n >0或mn <0 ) ,不平行于对称轴的任一弦AB与过AB中点M的直线OM的斜率之积为常数 - mn .证明 :设A(x1 ,y1 )、B(x2 ,y2 )、M (x0 ,y0 ) .由 mx21 +ny21 =1,mx22 +ny22 =1,两式相减 ,得m(x1 +x2 ) (x1 -x2 ) +n(y1 +y2 ) (y1 -y2 ) =0 .因x1 +x2 =2x0 ,y1 + y2 =2 y0 ,故mx0 (x1 -x2 ) +ny0 ( y1 - y2 ) =0 .又∵ x1 -x2 ≠ 0 ,x0 ≠ 0 ,∴  y1 - y2x1 -x2·y0x0=- …  相似文献   

9.
性质 1 如图 1,过点Q( -a ,0 ) (a >0 )的直线l与抛物线 y2 =2 px( p >0 )相交于M、N两点 ,H为 (a ,0 ) ,则∠MHQ =∠NHx .证明 设M (x1,y1) ,N(x2 ,y2 ) ,直线l:y=k(x a)  (k≠ 0 ) ,与抛物线方程 y2 =2 px联立 ,消去 y得k2 x2 ( 2ak2 - 2 p)x k2 a2 =0 .  由韦达定理知 x1x2 =a2 .又M、N在抛物线上 ,且在x轴的同侧 ,∴y1y2 =4 p2 x1x2 =2ap ,x1=y212 p,x2 =y222 p.由x1≠x2 ,知x1≠a ,x2 ≠a ,故直线MH、NH的斜率存在 .又kHM kNH =y1x1-a y2…  相似文献   

10.
一、填空题 (本大题满分 48分 ,本大题共有 1 2题 ,只要求直接填写结果 ,每题填对得 4分 ,否则一律得零分 ) .1 .已知函数 f(x) =x +1 ,则 f- 1 ( 3 ) =.2 .直线 y=1与直线 y =3x+3的夹角为.3 .已知点P(tanα ,cosα)在第三象限 ,则角α的终边在第象限 .4.直线 y=x -1被抛物线 y2 =4x截得线段的中点坐标是 .5.已知集合A =x||x|≤ 2 ,x∈R ,B=x|x≥a ,且A B ,则实数a的取值范围是 .6.已知z为复数 ,则z+ z>2的一个充要条件是z满足 .7.若过两点A( -1 ,0 )、B( 0 ,2 )的直线l与圆(x-1 ) 2 +( y-a) …  相似文献   

11.
在平面解析几何中 ,关于平行直线有如下结论 :设有两条平行直线l1:Ax By C1=0和l2 :Ax By C2 =0 ,则到这两条直线距离相等的直线方程为Ax By C1 C22 =0 .证明 设P(x ,y)是所求直线上任一点 ,由题设以及点到直线的距离公式 ,有|Ax By C1|A2 B2 =|Ax By C2 |A2 B2 .  因为l1与l2 在点P的两侧 ,所以有Ax By C1=- (Ax By C2 ) ,即 Ax By C1 C22 =0为所求的直线方程 .运用该结论可以得到一种求直线对称点的新方法 .例 已知A(- 2 ,4 ) ,求它关于直线l:2x- y -1=0的对…  相似文献   

12.
问题 :设A1B2 ≠A2 B1,若x、y满足 :m1≤F1(x ,y) =A1x +B1y≤M1,m2 ≤F2 (x ,y) =A2 x +B2 y≤M2 ,求函数F(x ,y) =Ax +By的取值范围 .对上述问题的求解 ,要先找出F(x ,y)与F1(x ,y)及F2 (x ,y)之间的线性关系 ,然后利用不等式的性质加以解决 .事实上 ,设F(x ,y) =λ1F1(x ,y) +λ2 F2 (x ,y) (λ1、λ2 为常数 ) ,也即是 :Ax +By =(λ1A1+λ2 A2 )x + (λ1B1+λ2 B2 ) y .∴  λ1A1+λ2 A2 =A ,λ1B1+λ2 B2 =B .解得 :λ1=B2 A -A2 BA1B2 -A2 B1,λ2 =A1B …  相似文献   

13.
知识链接二次函数y=ax2 +bx +c(a≠ 0 )与一元二次方程ax2 +bx+c =0 (a≠ 0 )的关系是 :二次函数y =ax2 +bx+c(a≠ 0 )的图象与x轴交点的横坐标是一元二次方程ax2 +bx +c =0 (a≠ 0 )的根 ;反之 ,一元二次方程ax2 +bx+c=0 (a≠ 0 )的根是二次函数y =ax2 +bx +c(a≠ 0 )的图象与x轴交点的横坐标 .一、判断二次函数图象与x轴的交点情况例 1 已知抛物线y =x2 - (2m - 1)x +m2 -m- 2 .(1)证明抛物线与x轴有两个不同的交点 .(2 )分别求出抛物线与x轴的交点A、B的横坐标xA、xB及与y轴…  相似文献   

14.
我们知道圆x2 + y2 =R2 在其上任一点 (x0 ,y0 )处的切线方程为x0 x+ y0 y=R2 如果对于直线Ax+By +C =0 (C ≠ 0 )作如下变形 :R2 A-CR2 x +R2 B-CR2 y =1.若点P(- R2 AC ,- R2 BC )满足圆的方程 ,则直线与圆相切于点P .椭圆 x2a2 + y2b2 =1在其上任一点 (x0 ,y0 )处的切线方程为 x0 xa2 + y0 yb2 =1,对于直线Ax+By +C =0 (C≠ 0 )作如下变形 :    a2 A-Ca2 x+b2 B Cb2 y=1.若点P(- a2 AC , b2 BC )满足椭圆方程 ,则直线与椭圆相切于点点P .双曲线x2a2 - y2…  相似文献   

15.
中点问题是解析几何中的重点、热点问题 .本文给出它的一种处理方法 :若M是线段AB的中点 ,且M点的坐标为 (x0 ,y0 ) ,则可设A(x0 +m ,y0 +n) ,B(x0 -m ,y0 -n)  (m ,n∈R) ,再结合题目中的其它条件进行解题 ,是一种行之有效的方法 ,以下分别举例加以说明 .1 判断直线 (或曲线 )的存在性例 1 已知双曲线 x24 - y22 =1,问是否存在直线l,使N(1,12 )为直线l被双曲线所截弦AB的中点 .若存在 ,求出直径l的方程 ;若不存在请说明理由 .解 由题意得N(1,12 )为弦AB的中点 ,可设A(1+m ,12 +n) ,B(1-m ,12 -n) …  相似文献   

16.
罗增儒教授所倡导的“通过解题过程的分析去探索怎样学会解题”在教育界被认为是一个很有价值的研究课题 ,他在本刊上连续发表的一系列关于解题的文章引起了读者的浓厚兴趣 .本文是笔者运用解题分析观点的一次实践 .问题 1 入射光线AC所在直线方程为x 2 y -3=0 ,它射到x轴上一点C后被x轴反射 ,如图 1,求反射光线BC所在的直线方程 .解 :由物理知识可得 ∠ACO =∠BCx ,则直线AC和BC的倾斜角互为补角 ,所以直线AC和BC的斜率互为相反数 .由已知可求得直线AC的斜率为 -12 ,点C的坐标为 (3 ,0 ) .所以 ,直线BC的…  相似文献   

17.
未来需要创造型人才 ,培养学生的创新意识和创新能力是当今数学的一个重要方向 .随着数学教学改革的不断深入 ,学案导学在教学过程中已发挥明显的作用 ,我们在撰写例习题课学案时 ,既注重教材这个丰富资源 ,又结合教学实际 ,借助于课本例习题 ,在培养学生创造思维和探索性思维方面作了一些有益的尝试 .下面是使用学案时对例题教学及深化过程的简录 .例题 斜率为 1的直线经过抛物线 y2 =4x的焦点 ,与抛物线相交于两点A、B ,求线段AB的长 .解题思路 设直线AB的方程为y =x- 1,代入抛物线方程 y2 =4x ,得x2 - 6x 1=0 .( )解得…  相似文献   

18.
在学习解析几何时,常常会遇到直线与线段相交时求参数范围的问题,这里先介绍一个简单结论,从而简捷地解决此类问题.定理 若直线l:Ax By C=0(A2 B2≠0)与P1(x1,y1),P2(x2,y2)为端点的线段相交,则(Ax1 By1 C)(Ax2 By2 C)≤0.证 设直线l与线段P1P2相交于点P(x,y),不妨设P不重合于P2,点P内分线段P1P2—的比为λ,则λ≥0,由定比分点坐标公式,得x=x1 λx21 λ, y=y1 λy21 λ.∵ 点P(x,y)在直线l上,∴ A·x1 λx21 λ B·y1 λy21 λ C=0,整理,得 Ax1 By1 C=-λ(Ax2 By2 C).…  相似文献   

19.
最值问题是初等数学中经常碰到的一类问题 .有些最值问题用常规代数方法较难入手 ,但若把问题适当变形 ,揭示其相应的几何意义 ,问题实质就直观清楚 ,易于解决 .例 1 已知x2 +2y2 =1 ,求z =x2 + y2 -4x + 4最值 .解 由条件知x2+ 2 y2 =1是中心在原点 ,长轴在x轴上的椭圆 ,它与x轴交于M(-1 ,0 ) ,N(1 ,0 ) .设P(x ,y)是椭圆上任一点 ,则z =(x-2 ) 2 + y2 就是P(x ,y)与点A(2 ,0 )距离 |AP| ,由图易知 |PA|≤|AM | ,|PA|≥|AN| .∴zmax =|AM|=2 + 1 =3 , zmin =|AN|=2 -1 =1 .…  相似文献   

20.
1 .反弹琵琶 ,独辟蹊径例 1 在椭圆 x2a2 + y2b2 =1(a >b >0 )上取一点P ,P与长轴两端点A、B的连线分别交短轴所在直线于M、N两点 ,设O为原点 ,求证 :|OM |·|ON|为定值 .证明 :设M ( 0 ,m)、N( 0 ,n) ,则lPA:y=m - 00 +a(x +a) ,①lPB:y =n - 00 -a(x -a) .           ②①×② ,得  y2 =- mna2 (x2 -a2 ) .又 y2 =b2 1- x2a2 ,故b2 a2 -x2a2 =- mna2 (x2 -a2 ) .mn =b2 ,为定值 .即 |OM |·|ON| =b2 ,为定值 .评注 :本题没有设出P点坐标进而求出M、N两…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号