首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
初中几何中证明边、角的不等关系是几何证明的一类题型.证题的理论根据有:1.三角形中任何两边之和大于第三边,任何两边的差小于第三边;2.直角三角形的斜边大于直角边;3.三角形中,大角对大边;4.三角形的外角大于与它不相邻的任何一个内用;5.三角形中,大边对大角.上述定理有一个共同的前提:在同一个三角形中.但在很多证题中,需要证明其不等关系的边(或角)不在同一个三角形中,此时就需要通过几何变换(主要是作辅助线或辅助团形),把它们迁移到同一个三角形中,然后用上述有关定理给出证明.这就是证明边、角不等关系的…  相似文献   

2.
三角形边角之间的不等关系是几何中的一类重要问题,解决这类问题主要依据下面两个定理: 定理1 在三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大(简写“大边对大角”).  相似文献   

3.
有些同学在证明线段相等关系的题目时感到比较顺手,而对证明线段不等关系的题目却觉得无从下手.现在我们就来谈谈如何证明线段不等.首先要熟悉证明线段不等关系的主要依据,它们是:(1)在一个三角形中,大边对大角,小边对小角,或大角对大边,小角对小边;(2)三角形的一个外角大于任何一个和它不相邻的内角;(3)三角形两边之和大于第三边,两边的差小于第三边;(4)代数中的不等式的性质等.一、当待证的线段在一个三角形内时,一般是根据已知图形的特点,逐步找出两线段所在三角形的对角的大小关系来解决.例1已知:在ABC中,…  相似文献   

4.
以三角形为依托的试题是近年高考的热点之一,现结合近年高考题,对该类试题加以归类整理,供同学们复习时参考.一利用三角形的边角关系解题三角形边角关系常见的有:(1)在三角形 ABC 中,大边对大角,小边对小角.(2)在三角形 ABC 中,两边之和大于第三边,两边之差小于第三边.  相似文献   

5.
学习三角形中边、角不等关系,应该在理解有关定理的基础上,掌握相应的解题、证题方法.三角形中边、角不等关系主要有以下三条定理:1.三角形任何两边的和大于第三边;2.三角形的一个外角大于任何一个和它不相邻的内角;3.三角形中,大角(边)对大边(角).  相似文献   

6.
三角形中边角不等关系的证明是一类常见的几何证明题型.在这类题的证明中往往用到以下定理或性质;(Ⅰ)垂线段最短;(Ⅱ)三角形中任意两边之和大于第三边;(Ⅲ)三角形的一个外角大于与它不相邻的任意一个内角;(Ⅳ)在同一个三角形中,大边对大角;(Ⅴ)在同一个三角形中,大角对大边.下面举例谈谈运用上述定理证明这类问题.例1如图1,bABC中,AD为高,AE为中线.求证:AB+AE十三BC>AD+AC.证明在AAEC中,AE+EC>AC,而EC一SBC,AE+SBC>AC……………·{1)又AB>AD(垂线段最短)………·②①十②得AB…  相似文献   

7.
三角形,具有丰富的内涵——两边之和大于第三边;斜边大于直角边;正(余)弦定理;面积公式;三内角之和为180°;大角对大边等.因此,对于解决抽象的“数”的问题,常可充分挖掘其条件的几何意义,进而构造三角形并逆用三角形的有关性质、定理,借助  相似文献   

8.
三角形中的不等式问题,也就是边与边、角与角、边角之间以及边、角、面积、内切圆半径、外接圆半径……之间的不等量关系问题。其中三边之间、三角之间基本的等量关系及不等量关系又是证明这类问题的基础。如两边之和大于第三边;两边之差小于第三边;任何一边均小于周长之半:三角中至少有一个角小于60°;大边对大角、大角对大边以及锐角三角形中任意两边的平方和均大于第三边的平方等等。此外,还有一些常用的基本不等式也是证明这类问题  相似文献   

9.
几何不等式     
平面图形中的几何量 ,包含线段的长度、角的大小以及图形的面积 .每类几何量之间均存在许多的相等关系和不等关系 .研究这些不等关系就构成了几何不等式的内容 .一、基础知识1 .线段不等式( 1 )如果A、B、C为任意三点 ,则AB≤AC BC .并且仅当C点位于AB线段上时等号成立 .这样就有三角形两边之和大于第三边 ,任两边之差的绝对值小于第三边 .( 2 )三角形中 ,大角 (边 )对大边 (角 ) .( 3)两组对边对应相等的两个三角形中 ,夹角 (第三边 )大的第三边 (夹角 )也大 .( 4)三角形一边上的中线小于另外两边之和的一半 .2 .角的不等式( …  相似文献   

10.
三角形是最基本的几何图形之一 ,它的三边相互制约 ,三内角之和为定值 .同时 ,它的边角之间有着密切的联系 (如大角对大边 ,大边对大角 ,正、余弦定理等 ) ,面积又可以用边和角来表示 ,因而在初中数学竞赛中备受命题者的青睐 .一、基础知识1 一般三角形的边满足a b >c,a -b <c;角满足∠A ∠B ∠C =1 80° ,一个外角等于两不相邻的内角和 .2 三角形中的重要线段 :中线、角平分线、高 .3 三角形的分类 ,包括按边分和按角分 .例 1 如图 1 ,P是△ABC内任意一点 .求证 :( 1 )∠BPC >∠A ;( 2 )AB AC >PB PC .导…  相似文献   

11.
三角形中的边、角不等关系主要有下面的定理和推论:定理1 三角形任意两边的和大于第三边.推论1 三角形任意两边的差小于第三边.定理2 在一个三角形中,如果两边不等,那么它们所对的角也不等,大边所对的角较大.定理3 在一个三角形中,如果两角不等,那么它们所对的边也不等,大角所对的边较大.  相似文献   

12.
解三角形就是利用三角形蕴含的基本方程(正弦定理、余弦定理、面积公式、三角形内角和定理)与不等式(三边的不等关系、大边对大角),解决三角形三条边和三个角的度量问题,同时也可以获得该三角形的其他度量信息,如周长、面积及其他伴随要素(高线、角平分线、中线)的度量信息。纵观近几年来的高考题和各地模考题,解三角形越来越受命题者的青睐。  相似文献   

13.
几何不等式的证明一般是指线段不等和角的不等,其根据为:三角形任一边小于其他两边之和而大于其它两边之差;在同一三角形巾大角对大边;在同圆或等圆中,两圆心角,圆周角大的所对的弦也大;两个三角形中有两边对应相等,则夹角大的所对的边也大等.而证明几何不等式,却没有一般方法可循,往往使学者无从着手,以致造成教  相似文献   

14.
几何不等式的证明一般是指线段不等和角的不等,其根据的理由为:三角形任一边小于其他两边之和而大于其它两边之差;在同一三角形中,大角对大边;在同圆或等圆中,两圆心角,圆周角大的,所对的弦也大;两个三角形中有两边对应相等,则夹角大的所对的边也大等,而证明几何不等式,却没有一般方法可循,往往使学者无从着手,以致造成教学中的  相似文献   

15.
解数学题常从直觉开始.凭直觉得的猜想,具有或然性——猜对了,或者猜错了.这与问题的难易有关,也与各人的数学素养有关. 问题 △ABC的两边a=3,b=4.(1)如果这个三角形是直角三角形,求第三边c的长度;(2)如果这个三角形是锐角三角形,求第三边c的取值范围;(3)如果这个三角形是钝角三角形,求第三边c的取值范围.凭多次解题经验,你可能会毫不吃力地回答:(1)c=5;(根据勾股定理)(2)c<5;(根据三角形中,小角对小边的定理)(3)c>5.(根据三角形中,大角对大边的定理)细心人立即发觉答案(2),(3)有误,应修正为:(2)1相似文献   

16.
怎样证明两线段或两角不等呢?有以下基本方法: 1.运用任意三角形两边之和大于第三边. 2.运用任意三角形的外角大于与它不相邻的内角. 3.运用在三角形中大角对大边,反之亦然.  相似文献   

17.
《考试周刊》2017,(23):105-106
正、余弦定理是解三角形的必备工具,什么场合用哪个定理,要视题目所给的条件而定。原则上,正弦定理适用于已知条件中有一组对边对角,余弦定理适用于已知条件中至少有两条边。三角形中已知条件为两边和其中一边的对角时,解的个数不确定,如果是使用正弦定理解题,则可以综合"三角形中角的正弦值的范围是大于0小于或等于1的数"及"大边对大角"来决定,如果是使用余弦定理解题,可由一元二次方程的正数解的个数来决定。  相似文献   

18.
一、熟悉化即把问题尽可能朝着我们熟悉的方向转化,以便充分利用已有的知识和经验。 [例1] 在等腰△ABC的一腰AB上取一点D,在另一腰AC的延长线上取CE=BD,连结DE,求证DE>BG。(1982年湖北省初中数学竞赛题) 回忆熟知的“在同一三角形中,大角对大边。”于是,设法构造以DE和BC为边的三角  相似文献   

19.
<正>中考几何题是中学数学考试中的重要部分,三角形线段关系是其中的一个常见考点.在中考几何题中,线段的长度关系、位置关系及角度关系是经常出现的问题.解答这类问题需要掌握一些技巧和方法,因此,对这类问题进行探究和总结具有一定的实际意义.一、与三角形线段关系有关问题的解答技巧(一)利用“大角对大边”判断线段的关系在△ABC中,三个内角∠A、∠B、∠C对应的边分别为a、b、c,如果∠A>∠B>∠C,那么a>b>c.例1如图1,在△ABC中,AC PQ.  相似文献   

20.
在初中平面几何学习中,经常遇到告知三角形的中线或者三角形一边的中点相关的一些题型.它们运用已知条件是不能直接证明的,下面介绍一种解决此类问题的方法:添加辅助线方法——倍长中线法.例1如图1在△ABC中,AC>AB,AD为BC边的中线,求证,∠1<∠2.分析欲证结论中角不等问题,一般想法是把不同一个三角形中的两个角转换到同一个三角形中去,用“大边对大角”证之.如何才能把∠1、∠2转换到同一个三角形中去?因为本题告知了AD是中线,可考虑“倍长中线法”,即中线AD延长一倍到E,连BE(如图所示),从而证得∠1=∠E,AC=BE即AC=BE>AB,得∠E<…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号