首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在立体几何中,求直线与平面所成角一直是各地高考的重头戏.下面笔者以《2013年浙江省普通高考考试说明》中样卷的一道解答题为例,用一题多解的形式介绍求直线与平面所成角的一些常用方法和解题技巧. 一、定义法 斜线与平面所成角定义:一个平面的斜线与其在平面内的射影所成的夹角叫做斜线与平面的所成角,范围为θ∈(0,π).  相似文献   

2.
罗建中 《中学教研》2004,(12):14-16
根据课本(新教材)中对距离与直线与平面所成角的定义与性质,即平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成角中最小的角.而距离则是两个图形F1内的任一点与图形F2内的任一点间的距离中的最小值,利用新教材定义的这一新特点,可把求此两种值转化为求某一函数的最值,下面分别举几例来加以说明。  相似文献   

3.
张安林 《云南教育》2007,(9Z):32-33
直线与平面所成的角包含了直线与平面平行、直线在平面内和直线与平面垂直这几种特殊情况,这里主要是谈斜线与平面所成角的常用求解方法。 1 利用平面的垂线来确定 斜线的射影由斜线与平面所成角的定义知,确定斜线与平面所成角的关键是找出斜线在平面上的射影,从而由斜线上的一点(不同于斜足)向平面引垂线来确定斜线在平面上的射影就成了一种基本方法。  相似文献   

4.
一、三余弦公式简介平面内的任意一条直线与这个平面的一条斜线所成的角的余弦值,等于这两条直线分别与该斜线在这个平面内的射影所成角的余弦值之积。如图1,设直线nα,斜线l在平面α内的摄影为m,l∩α=A,斜线l与平面α所成角为θ1,射影m与直线n所成角为θ2,斜线l与直线n所成角为θ,  相似文献   

5.
高中立体几何中的空间角,主要有3种:两异面直线所成的角,斜线与平面所成角,以及两相交平面所成角.求这些角,常规方法是"一作二证三计算",其中作图求角有时比较困难,若采用向量法,则可有效解决这一困难.下面就向量法求空间角,逐一分析,供读者商榷.  相似文献   

6.
<正>在立体几何的学习中,大家都知道三余弦定理(又称最小角定理,反映的是斜线和它在平面内射影所成角是斜线与平面内任一直线所成角的最小值),但只有少数人知道还有三正弦定理(又称最大角定理).本文主要介绍三正弦定理的内容、证明及其应用.一、三正弦定理如图1,设二面角M-AB-N的度数为锐角α,在平面M上有一条射线AC,它与棱AB所成角为锐角β,与平面N所成角为锐角γ,则有sin γ=sin βsin α.  相似文献   

7.
立几课本中第33页11题: 经过一个角的顶点引这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在直线. 立几课本中第122页第3题:AB和平面a所成角是θ1,AC在平面a内,AC和AB的射影AB'所成角θ2,设∠BAC=θ,求证:cosθ1·cosθ2=cosθ.(如图1)  相似文献   

8.
李昌湛 《中学教研》2006,(12):21-23
斜线与平面所成的角在立体几何中占有重要地位,求斜线与平面所成角的大小是一种典型、灵活的立体几何题型,也是一个难点.这类问题是近几年高考的一个热点,笔者通过对一道高考题的多种解法的探讨,借以说明此类问题的几种求解策略.  相似文献   

9.
直线与平面所成角是三种空间角之一.在掌握直接法的基础上,进一步学会转化法,将开拓思路,活化思维,增强能力. 一、直接法按定义,直接作出斜线在平面内的射影,则斜线与射影所成的锐角就是所求角.求解过程中,一般应遵循一定位,二定性,三定量的解题顺序.  相似文献   

10.
斜线和平面所成的角是高考的常考内容,怎样求斜线和平面所成的角的大小呢?本文介绍如下四种策略.1.利用定义一个平面的斜线和它在这个平面内的射影的夹角,叫做斜线和平面所成的角,寻找斜线和平面所成的角,要在斜线上任取一点作平面的垂线,垂足的定位至关重要.【例1】(2005年高考全国卷Ⅱ)如图,四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E、F分别为CD、PB的中点.(Ⅰ)求证:EF⊥平面PAB;(Ⅱ)设AB=2BC,求AC与平面AEF所成的角的大小.(Ⅱ)解1,如图1,延长AE、BC相交于G,连结FG,则FG为平面PBC与平面AEF的交线,而证…  相似文献   

11.
“斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角”,这是斜线和平面所成角的一个重要性质,它在解决立体几何中有关角的不等式问题时,大有用处. [例1]rt△ABC的斜边BC在平面α内,且两直角边AB、AC与α所成的角分别为θ_1、θ_2.求证:  相似文献   

12.
在立体几何中,有些求体积问题可以通过等积变换来完成,即将求一个几何体的体积等价转化为求另一个几何体的体积(新的几何体的体积一定是好求的);求某些点到到平面的距离,也可以通过等积法来完成,采用这种方法可以回避寻找垂足点的具体位置,从而降低了思维难度,省去许多作图和论证过程;求斜线与平面所成角时,若能求得斜线上的某点到斜足的距离及该点到平面的距离,便可快速求出该斜线与这个平面所成的角.下面结合几道典型试题展示一下此解法(以下各题均只给出最后一小题的解法),供同学们参考.  相似文献   

13.
最小角原理平面的一条斜线和它在该平面内的射影的夹角,是这条斜线与该平面内任一直线所成角中最小的角.  相似文献   

14.
杨钊  吉众  刘琳 《新高考》2011,(4):36-42
从一道题看异面直线所成角大小的求法杨钊题目在直二面角α-l-β的两个半平面内各有一点A,B,线段AB和两个半平面所成的角都是30°,求线段AB与该二面角的棱l所成角的大小.解法一(定义法)定义法的关键是作出两异面直线所成的角,然后通过解三角形求角.  相似文献   

15.
直线与平面所成的角是分类定义的,当直线与平面平行或在平面内时,直线与平面所成的角为0;当直线与平面垂直时,直线与平面所成的角为π/2;当直二线是平面的斜线时,直线与其在平面内的射影的夹角即为直线与平面所成的角.斜线与平面所成角的范围为(0,π/2),直线与平面所成角的范围为[0,π/2]。  相似文献   

16.
直线与平面所成角是空间角的一种重要类型。也是高考常考的题型,它是斜线和斜线在平面内的射影的夹角,是这条斜线和这个平面内任一直线所成的角中最小的角,它的求法主要有以下几种。  相似文献   

17.
一、求空间角1.斜线与平面所成的角先将斜线和平面所成的角转化为两直线所成的角,再转化为向量的夹角.设直线a的方向向量和平  相似文献   

18.
现行高中立体几何(必修本)在给出直线和平面所成角的定义后,为了说明定义的必要性和合理性,教材(第27-28页)用黑体字补叙了下列命题“斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角”(以下称为最小角定理),但教材及有关数学资料对最小角定理在解题中的应用却未提及,本文列举数例加以简要说明。 例1 在长方体有一个公共顶点P的三条棱上分别各取异于点P的点A,B,C,得一个截面三角形ABC则△ABC是( )  相似文献   

19.
求斜线和平面所成角的问题,历来都被考试命题所青睐.它是教学的重点,也是一个难点.解决这类问题的“三步曲”是,作角、证角、计算,其中作角是关键.解题时常会因判断不准,作角位置不正确,导致解题失败.本文介绍一个斜线和平面所成角的性质,可避免作角、证角的麻烦,而使问题顺利解决.定理 经过一个角的顶点,引这个角所在平面的斜线,如果斜线和这个角的两边的夹角为α、β,这个角为γ,那么这条斜线与平面所成的角是δ=arccoscos2α+cos2β-2cosαcosβcosγsinγ.图1证明 如图1,∠γ所在…  相似文献   

20.
廖克杰 《高中数理化》2014,(9):36-37,38
已知AO为平面a外的一条斜线(如图1),A为斜足,OB⊥a,B为垂足,则直线AB是斜线AO在平面a内的射影.设AC是a内的任一直线,AO与AC所成角为θ,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号