首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用直线与圆有公共点,能够解决许多比较复杂的数学问题.常常用到的结论有两条:其一,直线与圆有公共点的充要条件是圆心到直线的距离不大于半径;其二,直线与圆相切时只有一个公共点.1一、解决有关函数最值问题例1:求函数y=54csoinsxx+-110的最值【解】函数表达式可化为:4sinx-5ycosx-10y-1=0而sin2x+cos2x=1,所以点(cosx,sinx)是直线4μ-5yυ-10y-1=0与圆μ2+υ2=1的公共点,即圆心(0,)到直线的距离不大于圆的半径,即d=|-10y-1|√16+25y21亦即(10y+1)216+25y2,、解之得:-35y31故ymax=31;ymin=-53例2:已知x29+y42=1,求z=x-3y的最大值与最小…  相似文献   

2.
最值问题是中学数学教材中的主要内容之一.多元函数的条件最值问题可以通过约束条件使其变成一元函数的最值问题求解.本文拟给出某些二元函数条件最值问题的两种简捷、明晰的解几计算方法.例1若x2+y2=k(k>0),求x+y的最大、最小值.分析:题目的几何意义十分明显,x2+y2=k表示圆心在原点,半径为k1/2的圆.若令x+y=m,即y=-x+m(m为参数),它表示斜率为-1的直线族.求x+y的最值,即求直线和y轴交点的最高,最低位置,但因受条件的约束,该直线不能离开圆,故必切于此圆(图1).于是得解法如下.  相似文献   

3.
求形如“函数y=a-bsinxc-dcosx的最值”问题的解法较多,从这些解法中可体现出一些数学思想.一、数形结合思想例1.求函数y=1+sinx2+cosx的最小值和最大值.分析:因函数y=1+sinx2+cosx的定义域为R,所以把1+sinx2+cosx可以看为点(cosθ,sinθ)与点(-2,-1)所在直线的斜率.而点(cosθ,sinθ)的轨迹是圆x2+y2=1,因而问题就成为点(-2,-1)与圆x2+y2=1上的动点的连线的斜率最大值、最小值问题.易知,过点(-2,-1)向圆x2+y2=1所作的两条切线的斜率的最大值和最小值就是函数的最大值和最小值.如图,用平面几何的知识得出斜率kBD为所求的最小值,斜率kBC为…  相似文献   

4.
错在哪里     
<正>1北京市丰台二中甘志国(邮编:100071)题目动圆C经过点F(1,0),并且与直线x=-1相切,若动圆C与直线y=x+2槡2+1总有公共点,则圆C的面积()A.有最大值8πB.有最小值πC.有最小值2πD.有最小值4π错解先得动圆C的圆心C(x,y)的轨迹是抛物线y2=4x,得直线y=x+2槡2+1与该抛物线相离.因为圆心C在抛物线y2=4x上时,该  相似文献   

5.
本刊文 [1 ]用几何方法改进了不等式例 1 已知 x,y∈ R,求证x2 + y2 + (x -1 ) 2 + y2 +x2 + (y -1 ) 2≥ 22 (3 -1 ) 1得出了一个更好的结果 .例 2 已知 x,y∈ R,求证x2 + y2 + (x -1 ) 2 + y2 +x2 + (y -1 ) 2 ≥ 22 (3 + 1 ) 2这体现了由数到形的沟通 ,但还不是完整意义上的数形结合 .本文补充由形到数的沟通并揭示结论 1、2的几何背景 .1 两种解法的沟通——由形到数1 .1 几何旋转的复数翻译如图 1 ,将△ OAP绕原点顺时针旋转 60°的几何实质是将 3条共点线段 OP,AP,BP首尾相连组成折线 BPP′A′;然后 ,由两点间直线距离最短 …  相似文献   

6.
求函数 F(t)=dt+e/t~2+bt+c的最值,已有一些同志谈及,本文将用几何法讨论这个问题,它具有便捷、简单、直观的特点。在F(t)=dt+e/t~2+bt+c中,令y=dt+e…①x=t~2+bt+c…②于是求F(t)的最值,就是求y/x的最值。由①得t=y-e/d代入②则x=(y-e/2)~2+b·y-e/d+c 整理可得(y-2e-bd/2)~2=d~2(x-4c-b~2/4)…③它所表示的是以(1/4(4c-b~2),1/2(2c-bd)为顶点,y=1/2(2c-bd)为对称轴,开口向右的一条抛物线。由于y/x=y-0/x-0,y-0/x-0是坐标为(x,y)的点与坐标原点连线的斜率,于是求y/x的最值,就是求曲线③上的点与坐标原点连线斜率的最值。由切线的意义,显然我们有  相似文献   

7.
一、利用圆的切线的斜率例1已知实数x、y满足x~2+y~2=1,求y+2/x+1的取值范围.解析单从数的角度研究,似乎很难.转换角度,以数形结合来研究,各式都有具体的形象.如图1,设P(x,y)是圆O:x~2+y~2=1上的点,则y+2/x+1是过P(x,y)、A(-1,-2)两点直线PA的斜图1率k_(PA).过A作圆的切线AB和AC,  相似文献   

8.
1 x0x y0y=R2的几何意义 我们知道,若P(x0y0)在圆x2 y2=R2上则x0x y0y=R2是过P(x0y0)点的圆的切线;若P(x0,y0)在圆外,过P点作圆的切线PA,PB,其中A,B是切点,则x0x y0y=R2是直线AB的方程;若P(x0,y0)在圆内,直线x0x y0y=R2与圆x2 y2=R2外离,其几何意义是什么?笔者在研究这个问题时,发现其几何意义是:过P(x0,y0)任作一弦AB,过A,B分别作圆的切线l1、l2,l1、l2交点的轨迹是直线x0x y0y=R2.  相似文献   

9.
<正>圆的一般式方程C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).当点P(x0,y0)不在圆C上时,x20+y20+Dx0+Ey0+F≠0,该数值有何几何意义呢?经过探索,我们发现结论已知圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),点P(x0,y0).(1)点当P在圆外时,切线PA切圆于点A,则切线长  相似文献   

10.
<正>一、试题呈现试题设直线y=kx+1与圆C:x2+y2+y2-2kx-2my-7=0交于M、N两点,且M、N关于直线x+y=0对称.(1)求m、k的值;(2)若直线l:x=ay+1与圆交于P、Q两点,是否存在实数a,使得OP⊥OQ?如果存在,求a的值;若不存在,请说明理由.二、解法探究解(1)m=-1,k=1.(过程略)(2)分析1方程思想联立方程组是几何问题代数化的常见途  相似文献   

11.
函数在闭区间上的最值问题本质上是一个数学规划问题 .高中教材中讨论了二次函数在闭区间上的最值问题 ,现在导数进入了中学教材 ,使得对三次函数最值的讨论成为可能 .本文讨论三次函数 y( x) =x3+ ax2 +bx+ c在闭区间 [α,β]上的最值问题 .记导函数 y′( x) =3x2 + 2 ax+ b的判别式为 Δ.当Δ≤ 0时 ,y( x)没有极值点 ,是单调增函数 ,所以 y( x)在 [α,β]的端点处达到最大、最小值 .当Δ >0时 ,y′( x)有两个零点 ,记为 x1和 x2 ( x1 相似文献   

12.
文[1][2]研究了当点P(x0,y0)分别在圆和椭园上及其内部、外部时,直线方程(x0x)/(a2)+(y0y)/(b2)=1的几何意义.本文将探讨点P(x0,y0)分别在双曲线(x2)/(a2)-(y2)/(b2)=1上及其内部,外部时,直线方程(x0x)/(a2)-(y0y)/(b2)=1的几何意义,并给出了它的一些实际应用.  相似文献   

13.
<正>直线与圆是几何的基础,解决此类问题常运用数形结合的思想方法.本文通过对与圆相关的几类典型问题的求解,探索其中隐含的一般规律,以期抛砖引玉.一、与圆有关的最值问题例1在平面直角坐标系中,A、B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值  相似文献   

14.
“简单线性规划”是高中数学新增内容,在高考中占有较重要的地位,考察线性规划的直接应用或间接应用,从近几年高考命题的情况分析,在高考复习中,有必要在教材内容的基础上,作出适当引申.其一是约束条件不限于一次不等式,可以是二元二次不等式或其它形式;其二是利用目标函数的几何意义解题,而且目标函数可以是非线性的.1联系直线在y轴或x轴上的截距解题例1已知实数x,y满足2│x-1│-y=0,求z=x+2y的最小值.解它的可行域的边界为一折线y=2│x-1│,目标函数z=x+2y的值就是直线x=-2y+z在x轴上的截距的值;令x+2y=0,它表示的直线为l,平移直线l到l′使l′过点M(1,0),此时,目标函数z取得最小值,zmin=1.例2已知实数x,y满足x2+y2=2x-2y+1≤0,求z=x-y-1的最大值和最小值.解它的可行域的边界是一个圆(x+1)2+(y-1)2≤1,(是非线性的可行域)目标函数z的值就是当直线y=x-z-1与可行域有公共点时,在y轴上截距的相反数再减1,因而截距最小时,z最大;截距最大时,z最小.图1令x-y=0,表示直线l:y=x.平移直线l到l′和l″,使l′和l″与圆(x+1)2+(y...  相似文献   

15.
例题的推广     
全日制普通高级中学教科书数学(试验修订本)第二册(上)中有这样一道例题(§7.7例2). 已知圆的方程是x2+y2=r2,求经过圆上一点M(x0,y0)的切线的方程. 解(略)所求切线方程为xx0+yy0=r2. 此切线方程简捷明了,体现了数学美,这里我们也许会想到当M(x0,y0)在圆x2+y2=r2的内部、外部时方程xx0+yy0=r2有何几何意义呢? 定理1 已知圆的方程是x2+y2=r2,点  相似文献   

16.
一、选特殊直线法.根据题设的几何意义选择特殊直线,利用其方程或几何特征进行估算. 例1 已知两点m(1,5/4)、n(-4,-5/4),给出下列曲线方程:①4x+2y-1=0;②x2+y2=3;③x2/2+y2=1;④x2/2-  相似文献   

17.
在高二解析几何教材的圆锥曲线一章中有这样的一个结论 :若P(x0 ,y0 )是圆 :x2 + y2 =r2 上的一点 ,那么过该点的圆的切线方程是x0 x + y0 y =r2 .(证明见教材 ) .问题 :若点P(x0 ,y0 )在圆x2 + y2 =r2 外(或圆内 )时 ,直线l:x0 x + y0 y =r2 是什么样的直线 ?与圆x2 + y2 =r2 有什么关系 ?不妨设点P(x0 ,y0 )不在坐标轴上 .直线l:x0 x + y0 y =r2 的斜率是kl =-x0y0(y0 ≠ 0 ) ,而kOP =y0x0(x0 ≠ 0 ) .∵klkOP =-1,∴直线l⊥OP .圆心O(0 ,0 )到直线x0 x + y0 y=r2 的距离为d =r2x20 + y20=r2|OP|.①由①可见 ,直线l与圆的关系由|…  相似文献   

18.
<正>在高中学习圆的知识后,经常会遇到下面的这类问题:引例已知x~2+y~2-4x+1=0,(1)求■的取值范围;(2)求y-x的取值范围;(3)求x~2+y~2的取值范围.解法1 (几何法) x~2+y~2-4x+1=0变形为(x-2)2+y~2=3记为圆C.(1)■的几何意义为圆C上任意一点P(x,y)  相似文献   

19.
曲线C在点P(x0,y0)曲率圆是与该曲线C相切于点P(x0,y0)(凹侧)的最大圆,曲率圆的圆心D的轨迹曲线G称为曲线G的渐屈线.抛物线y2=2px(p>0)、椭圆x2/a2+y2/b2=1和双曲线x2/a2-y2/b2=1的渐屈线方程分别为y2=8/27P(x-p)3、x3/(c2/a2/3=1和x3/(c2/a2/3-y3/(c2/b)2/3=1.抛物线、椭圆和双曲线的最小曲率圆都是它们的内切圆,其方程分别为(x-P)2+y2=p2、(x±c2/a)2+y2=b4、(x±c2/a)2+y2=b4/a2.  相似文献   

20.
将代数式赋予一定的几何意义后,常给研究范围问题带来意想不到的巧妙方法。就此,下面从3个方面谈一谈圆的性质在研究参数范围和求函数最值中的作用。1 利用圆的切线的斜率例1 已知实数x,y满足x~2+y~2=1,求y+2/x+1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号