首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

2.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

3.
三角形是平面几何中最基础、最常见的一种图形 ,在有关几何的学习中 ,我们常把图中的三角形作为分析的基本单位 ,用三角形面积公式妙解几何题。一、利用同一三角形面积的两个不同表达式图 1例 1 如图 1 ,CD、AE分别是的边AB、BC上的高 ,且CD =4、AE =8、BC =6 ,求AB的长。分析 :求出△ABC的面积 ,此题便很容易得解。因为△ABC的面积可以由AB及AB边上的高和BC及BC边上的高得到两个不同的表达式 ,从而得到只含有未知数AB的相等关系。解 :△ABC的面积可表示为 :12 ·AB·CD或 12 ·BC·AE即12 ·AB·CD =12 ·BC·AEAB …  相似文献   

4.
初级中学课本《几何》第二册第85页上有这样一道例题: 命题1 如图1,AD是△ABC的高,AE是△ABC的外接圆直径。求证:AB·AC=AE·AD。本题的证明是极为简单的,只须连结BE,由△ABE∽△ADC即得结论。将命题1的条件稍加改变,则有: 命题2 △ABC中,∠A的平分线交BC于D,交外接圆于E(图2)。则AB·AC=AD·AE。以上两个命题告诉我们:三角形中凡关于高。外接圆直径,内角平分线与两边发生联系的某些命题,均可用它们来解决。例1 如图3,△ABC内接于直径为d的圆。设BC=a,AC=b,那么△ABC的高CD等于多少?  相似文献   

5.
一、通过“三点定位”找相似  如果所证比例线段中的两个前项与两个后项分别能确定一个三角形 ,或者每个比的前后项分别能确定一个三角形 ,那么只需证明这两个三角形相似就可以了。前者称为“横向定位法”,后者称为“纵向定位法”,这种寻找相似三角形的方法是最基本 ,也是最常用的方法。  例 1 .如右图 ,AD是△ ABC的高 ,AE是△ ABC的外接圆直径。求证 :AB· AC=AE· AD。分析 :欲证 AB·AC=AE·AD,需证 ABAE=ADAC。由“横向定位”法可知需证△ ABD∽△AEC,作辅助线连结 EC,即可证明 ;由“纵向定位法”可知需证△ ABE…  相似文献   

6.
翻开数学辅导书或模拟试卷,会发现许多练习题、测试题都直接或间接地用到了人民教育出版社出版的《几何》第三册第36页例2的知识,有的就是它的变形.因此,加深对该例题的理解,有助于我们提高证题能力.一、分析该例题的证题思路例如图1,AD是△ABC的高,AE是△ABC外接圆的直径.求证:AB·AC=AE·AD.简析:求证比例式,首先应考虑构造两个相似三角形,因为以AC、AD、DC为边的三角形为直角三角形,又考虑到AE为直径,故而想到连结BE(或CE),证△ABE∽△ADC(或证△ACE∽△ADB)即可.证明略.二、拓展及练习1.如图2,△ABC内接于⊙O,AB=AC…  相似文献   

7.
文[1]给出一道南昌市高中数学竞赛题的简证,该题可叙述成如下:命题1△ABC为等边三角形的充要条件是sinA,sinB,sinC顺次成等差且cosA,cosB,cosC顺次成等比.笔者对该命题进行了类比探究,以命题形式进行叙述,本文约定:△ABC三个内角A,B,G所对边分别为a,b,c.命题2 AABC为等边三角形的充要条件是sinA,sinB,sinC顺次成等差且cosA,cosB,cosC顺次成等差.证明:必要性显然,下证充分性.由sinA,sinB,sinC成等差,得2sinB=sinA+sinC,由正弦定理,得  相似文献   

8.
我们知道,在△ABC中,若A,B,C为三角形的三内角,则有: sinA sinB sinC≤3(3~(1/2))/2=3sinπ/3。 本短文将利用平几知识,给出如下推广: 定理 在△ABC中,若A,B,C为三角形的内角,则有:  相似文献   

9.
命题1“等边三角形内任一点至三边距离之和为一定值”有几种证法,但以下面的证法较简便。证明:如图1,连结PA,PB,PC. ∵S_(△ABC)=S_(△PBC)+S_(△PCA)+S_(△pAB),∴S_(△ABC)=1/2BC·PD+1/2CA·PE+1/2AB·PF又 AB=BC=CA,∴ PD+PE+PF=2S_(△ABC)/BC. 等边三角形的这一性质可推广到等边凸多边形中,以上的证明实质上给出如下的定理1 等边凸多边形内任一点至各边的距离之和为定值。特殊地,正多边形内任一点至各边的距离之和为定值。  相似文献   

10.
定理 1:若△DEF是△ABC的垂足三角形,则△DEF的三边长分别为acosA、bcosB、CcosC.(如图1) 证明:因为BE⊥AC,CF⊥AB,所以∠BEC=∠CFB=90°,所以B、C、E、F四点共圆.所以∠AEF=∠ABC,又因为∠EAF=∠BAC.所以B△AEF∽△ABC,所以EF/BC=AE/AB,在Rt△ABE中,cosA=AE/AB,所以EF/BC=cosA,所以,EF=acosA,同理可得DF=bcosB,DE=ccosC  相似文献   

11.
定理 设△DEF为锐角△ABC的垂足三角形 ,BC =a ,CA =b ,AB =c,△AEF、△BDF、△CDE的外接圆分别为⊙O1(R1)、⊙O2 (R2 )、⊙O3(R3) ,则有aR1 bR2 cR3≥ 63 .证明 :由于B、C、E、F共圆 ,∠AEF =∠B ,∠AFE =∠C ,从而△AEF∽△ABC(如图 ) . ∴ EFBC=AEAB=cosA , ∴EF =acosA .同理 DF =bcosB ,DE =ccosC .由正弦定理得EF =2R1sinA .∴acosA =2R1sinA ,从而aR1=2tanA .同理 bR2=2tanB ,cR3=2tanC .由于△ABC为锐角三角形 ,tanA >0 ,tanB >0 ,tanC >0 ,∴ tanA tanB tanC33≥tanAtanBtanC=tanA ta…  相似文献   

12.
题目:已知a、b、c是锐角三角形ABC的三个内角A、B、C所对的三边,tg1/2A=tg~3 1/2 C,sinBcosC=sin(C-B),并且a、b、c、成等比数列,试证明△ABC是正三角形。有一本书给出的解答提示如下:“先由已知条件和A+B+C=π导出B=1/3π,再由余弦定理证明 a=c,则△ABC是正三角形”。其实,这道题是不妥的。为了便于分析,笔者根据以上提示猜测其证明过程为: 由已知 sinB·cosC=sin(C-B) 得 sinB·cosC=sinCcosB-cosCsinB化简得 2sniB·cosC=sinC·cosB ①  相似文献   

13.
在平面几何里,证明线段不等的问题是一个难点·学生常常束手无策,那么是否有规律可循呢?其实,这类问题都可以转化为利用三角形三边关系定理来解决,这里从以下几方面举例说明·一、利用翻折变换集中条件例1已知:如图1,DE是BC的垂直平分线·求证:AB>AC.证明:连接DC.在△ADC中,AD+DC>CA·因为DE是BC的垂直平分线,所以BD=DC,所以AD+BD>AC,即AB>AC.例2已知:如图2,在△ABC中,AE为外角∠DAC的平分线,P为AE上的一点·求证:PB+PC>AB+AC.在AD上截取AM=AC,连接PM·因为AP=AP,∠1=∠2,AM=AC,所以△APM≌△APC,所以PM=P…  相似文献   

14.
三角形,梯形中位线是我们在计算、证明中经常用到的两条重要的线段,如果能把三角形、梯形中位线辅助线寻找出来,问题就会迎刃而解·所以就三角形、梯形中位线辅助线在证明中应用谈一下技巧·一、有一边中点时,常构造中位线例1如图1,在梯形ABCD中,AD∥BC,∠DAB=90°,E为CD的中点,连结AE、BE·求证:AE=BE·证明:取AB中点F,连结EF·因为EF是中位线,所以EF∥AD∥BC·因为∠DAB=90°,所以∠AFE=∠BFE=90°,所以△AEF≌△BEF,所以AE=BE·例2如图2,E、F分别为四边形ABCD两对角线AC、BD之中点·求证:EF>21|AB-CD|·证明…  相似文献   

15.
首先介绍一个有关的常用图形:如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.由相似三角形易得CD2=AD·BD,AC2=AD·AB,BC2=BD·AB.练习1.在正方形ABCD中,AE=1/4AD,E在AD上.G是AB的中点,GF⊥EC,垂足为F.求证:GF2=CF·EF.(提示:连接EG,CG.通过证△AEG(?)△BGC,得  相似文献   

16.
有些三角不等式问题蕴含着丰富的几何直观性。此时,可考虑构造直观的几何图形来解决此类问题。例1在锐角三角形中,求证 求证:sin2θ·tgθ/2≤1/2 sinA sinB sinC>cosA cosB cosC 证明:(1)当π/2≤θ<π,θ=0时, 证明:△ABC是锐角三角形,如图1,  相似文献   

17.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

18.
等边三角形是数学学习的一个基本图形,两个等边三角形进行各种各样的拼接,形成比较复杂的图形.但只要掌握三角形全等这个武器,就能快速准确分解复杂图形,防止其他无关信息干扰,从而快速获得解题思路,提高解题的有效性,收到化繁为简、化难为易的良好效果.一、以一个点为顶点向外作两个等边三角形基本题型:如图1:△ABC与△ADE都是等边三角形,点D在AC上,求证:BD=EC证明∵△ABC与△ADE都是等边三角形∴BA=AC,AD=AE,∠BAC=∠DAE=60°  相似文献   

19.
在中学数学学习过程中 ,将一些题目进行变式练习 ,有利于开阔同学们的思路 ,培养创造性思维能力 ,提高归纳、总结、发现规律的能力。图 1问题 :如图 1 ,C是线段AB上的一点 ,分别以AC、BC为边在AB的同侧作等边三角形ACD和等边三角形BCE ,边接AE、BD 求证 :AE =BD 证明 :△ACD和△BCE是等边三角形 ∠ 1 =∠ 3=6 0° ∠ACE =∠BCDAC =CD ,BC =CE △ACE≌△DCB图 2 AE =BD 变式一 :将点C改在AB的延长线上 ,如图 2。证明 :△ACD与△BCE是等边三角形 AC =CD ,BC =CE∠C =∠C △ACE≌△DCB AE =BD 变式二 :点C…  相似文献   

20.
在△ABC中,设BC=a,AC=b,AB=c.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC本文试图从多角度探索这一定理的证明方法,供大家参考考。以下均以锐角三角形为例,钝角三角形的情况可仿照证明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号