首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 3D predictive golfer model can be a valuable tool for investigating the golf swing and designing new clubs. A forward dynamic model, which includes a four degree of freedom golfer model, a flexible shaft based on Rayleigh beam theory, an impulse-momentum impact model and a spin rate dependent aerodynamic ball model, is presented. The input torques for the golfer model are provided by parameterized joint torque generators that have been designed to mimic muscle torque production. These joint torques are optimized to create swings and launch conditions that maximize carry distance. The flexible shaft model allows for continuous bending in the transverse directions, axial twisting of the club and variable shaft stiffness as a function of the length. The completed four-part model with the default parameters is used to estimate the ball carry of a golf swing using a particular club. This model will be useful for experimenting with club design parameters to predict their effect on the ball trajectory and carry distance.  相似文献   

2.
Abstract

Some golf equipment manufacturers produce matched sets of golf clubs using an empirical method based on first moments of mass as well as shaft stiffness, whereas others claim to match sets on the basis of moment of inertia and dynamic considerations of shaft stiffness. This paper considers the significance of the mass distribution feature of club matching with regard to the parameters relating to physical exertion by the golfer. It is shown that dynamic considerations require a mass variation through the set almost identical to the variation prescribed by static swing weighting, and that conventionally static balanced golf clubs differ in mass by less than five percent from that suggested using a dynamic balance. It is also shown that the maximum driving force is relatively the same for a specific golfer using a variety of golf clubs but that the driving forces of the professionals were higher than those recorded for the amateurs.  相似文献   

3.
Teaching and playing professionals offer multiple theories concerning the manner in which forces should be applied to the handle of the club during the golf swing. This study extends recent research concerning grip pressures and forces in golf, with the purpose of exploring the similarities and differences between force profiles for a 7-iron and driver swung by proficient golfers. A secondary purpose was to further analyze the way that golfers use grip forces to manipulate the club. Grip forces were measured on eight low handicap golfers (USGA indexes 0 to 7) swinging their own 7-irons and drivers. In total, lead-hand and trail-hand grip forces were isolated as well as anatomically specific forces within the hands. Force profile variability across multiple swings for each golfer and between golfers characterized consistencies and important differences. Correlations between 7-iron and driver force profiles characterized force ‘signatures.’ The data highlight large fluctuations in grip forces during the swing. Marked differences between participants were observed, involving force magnitudes and phasing. Dominant forces arose primarily from the lead hand, specifically the last three fingers. Force profiles were highly repeatable across swings for a golfer (standard deviations < 7% of total force) and force profile correlations between 7-iron and driver for a golfer were remarkably high (r2 = 0.86). Notably, within swing force variability was greatest during club acceleration, but dramatically decreased at impact.  相似文献   

4.
A common belief in the golf community is that a lighter shaft allows the golfer to swing the club faster. From a mechanical point of view, reducing the mass of the shaft would result in a faster swing. However, a golfer is not a purely mechanical system, and so it is simplistic to assume that identical loads will be applied when swinging different clubs. Therefore, the purpose of this study was to test the hypothesis that golfers behave similar to a mechanical model when swinging clubs of varying mass. A torque driven model estimated the effects caused by the addition of 22?g to the shaft. Twelve golfers hit balls with a standard driver as well as a driver fitted with the same 22?g increase in mass. Club kinematics were collected with a high-speed motion capture system. The model predicted a 1.7?% lower club head speed for the club with additional mass. One subject showed a similar reduction (1.4?%), but one subject showed an increase in club head speed by 3.0?%. Ten subjects did not show any significant differences. These results suggest that golfers do not respond to changes in club mass in a mechanically predictable way.  相似文献   

5.
Effects of fatigue on golf performance   总被引:1,自引:0,他引:1  
The purpose of this study was to determine if body position, weight transfer, and/or pelvis/trunk rotations changed as a result of a golf specific fatiguing protocol and whether these changes affected resultant club head velocity at impact and shot consistency. Six male golfers and one female golfer participated in the study, who had a mean age, height, and body mass of 23.9 +/- 3.9 years, 177.4 +/- 4.9 cm, and 75.3 +/- 9.9 kg, respectively. Path analysis was used to determine the relationships between fatigue, biomechanical variables, and resultant club head velocity at impact and shot consistency. In the statistical models representing the effects of biomechanical variables calculated at the top of the swing and ball contact, golf specific fatigue was associated with a 2.0% and 2.5% reduction in the club head velocity and a 7.1% and 9.4% improvement in the shot consistency, respectively. These data suggest that golf specific fatigue was not related to the initial lower body sagittal plane angles at address nor was simulated golf specific fatigue related to peak transverse plane pelvis and trunk rotational velocities (or their timings) in a manner that indicates a relationship to resultant club head velocity and shot consistency.  相似文献   

6.
Previously, forward dynamic models of the golf swing have been planar, two-dimensional (2D) representations. Research on live golfers has consistently demonstrated that the downswing is not planar. This paper introduces and evaluates the validity of a 3D six-segment forward dynamics model of a golfer. The model incorporates a flexible club shaft and a variable swing plane. A genetic algorithm was developed to optimise the coordination of the model’s mathematically represented muscles (torque generators) in order to maximise clubhead speed at impact. The kinematic and kinetic results confirmed previous findings on the proximal to distal sequencing of joints and the muscles powering those joints. The validity of the mathematical model was supported through comparisons of the model’s swing kinematics and kinetics with those of a live golfer.  相似文献   

7.
The displacement of the golf ball struck by a driving club is affected by several player characteristics and equipment parameters and their interrelationships. Some modelling and simulation studies have shown a relationship between shaft length and clubhead speed, supported by a few experimental studies. The aim of the present study was to examine the relationship between driver length and ball launch conditions in an indoor test facility using a ball launch monitor. Nine males considered to be skilled golfers participated in the study. Four driving clubs of total length 117, 119, 124, and 132 cm were assembled from commercially available components and were used to strike golf shots while initial ball velocity, backspin rate, and launch angles were measured. Statistical analysis identified a significant difference in initial launch speed due to club length, a significant difference between participants, but no difference between the trials for a given golfer. A positive trend was noted between backspin and launch angle for all four clubs, and significant inverse associations between initial launch speed and backspin rate and launch angle. However, the combined launch conditions associated with increasing length were not considered optimal, with uncontrolled swingweight and moment of inertia effects considered to be limiting factors.  相似文献   

8.
Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)–centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM–COP inclination angle, COM–COP inclination angular velocity and normalised COM–COP inclination angular jerk were used. Professional golfer group revealed a smaller COM–COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM–COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries.  相似文献   

9.
Backspin rate and friction coefficients have been studied for a range of commercially available wedges and multi-piece golf balls using a mechanical golfer and a modified pin-on-disc tester. Analysis of shot characteristics for wedges with three different surface roughness values and two golf ball types (two-piece ionomer covered and three-piece polyurethane covered) was carried out using the mechanical golfer, whilst pin-on-disc testing was performed to determine the friction coefficient between the different golf ball covers (with a range of hardness values) and steel discs with a range of surface roughness values seen for different wedges. It was found that the polyurethane covered balls (lower hardness) showed greater backspin than the ionomer covered balls (higher hardness), and showed higher friction values during the pin-ondisc testing. During the mechanical golfer tests, however, it was observed that the ionomer covered balls showed an increase in friction coefficient for increasing surface roughness, although the effect of differences in cover material types was greater than that of surface roughness variation for the same cover material within the range of commercially available wedge face surface roughnesses.  相似文献   

10.
Previous research indicates that the motion of the golf club is not planar and that the plane traced out by the club is different than that of the golfer's hands. The aim of the present study was to investigate how the position of the club, relative to the golfer's swing plane, influences the motion of the club by using a four-segment (torso, upper arm, forearm, and club), three-dimensional forward dynamics model. A genetic algorithm optimized the coordination of the model's four muscular torque generators to produce the best golf swings possible under six different conditions. The series of simulations were designed to demonstrate the effect of positioning the club above, and below, the golfer's swing plane as well as the effect of changing the steepness of the golfer's swing plane. The simulation results suggest that positioning the club below the golfer's swing plane, early in the downswing, will facilitate the squaring of the clubface for impact, while positioning the club above the plane will have the opposite effect. It was also demonstrated that changing the steepness of the golfer's swing plane by 10 degrees can have little effect on the delivery of the clubhead to the ball.  相似文献   

11.
Abstract

The displacement of the golf ball struck by a driving club is affected by several player characteristics and equipment parameters and their interrelationships. Some modelling and simulation studies have shown a relationship between shaft length and clubhead speed, supported by a few experimental studies. The aim of the present study was to examine the relationship between driver length and ball launch conditions in an indoor test facility using a ball launch monitor. Nine males considered to be skilled golfers participated in the study. Four driving clubs of total length 117, 119, 124, and 132 cm were assembled from commercially available components and were used to strike golf shots while initial ball velocity, backspin rate, and launch angles were measured. Statistical analysis identified a significant difference in initial launch speed due to club length, a significant difference between participants, but no difference between the trials for a given golfer. A positive trend was noted between backspin and launch angle for all four clubs, and significant inverse associations between initial launch speed and backspin rate and launch angle. However, the combined launch conditions associated with increasing length were not considered optimal, with uncontrolled swingweight and moment of inertia effects considered to be limiting factors.  相似文献   

12.
运用文献资料法、访谈法、问卷调查法、数理统计法对长沙市高尔夫俱乐部教练员进行了现状调查与分析,研究结果表明:(1)在年龄结构上,长沙市高尔夫俱乐部教练员呈现年轻化趋势。年轻教练占较大比例。(2)在性别结构上,长沙市高尔夫俱乐部教练员中呈现男多女少的现象。这与全国其他地方的高尔夫教练员的情况类似。(3)长沙市高尔夫俱乐部教练员中教龄较长的教练员学历水平普遍不高,而教龄较短的教练员学历集中在本科阶段。(4)与其他城市相比,长沙高尔夫俱乐部的教练平均月薪处于中等水平,与长沙在全国的城市排名来看是较为相符的,与其他体育项目的教练员薪资水平相比相对较高。(5)长沙市高尔夫俱乐部教练员资格认证情况不够乐观。(6)长沙市高尔夫俱乐部教练员中的外籍教练年龄都在40岁以上,平均教龄为20年左右,平均月薪为10000元左右,学历方面,外籍教练员均是本科,资格认证方面,外籍教练员有显著优势。  相似文献   

13.
The purpose of this paper was to examine whether the ball position and wrist action (different types of torque application) could be optimised to increase the horizontal golf club head speed at impact with the ball. A two-dimensional double pendulum model of the golf downswing was used to determine to what extent the wrist action affected the club head speed in a driver, and how this affected the optimum ball position. Three different patterns of wrist actions (negative, positive, and negative-positive torque at the wrist) were investigated; and two criteria (maximum and impact criteria) were used to assess their effectiveness in terms of the maximum horizontal club head speed, and the club head speed as the shaft becomes vertical when viewed ‘face-on’. The simulation results indicated that the horizontal club head speed at impact could be increased by these patterns of wrist actions and the optimum ball position could be determined by the impact criterion. Based on the analysis of the energy flow from the input joints of shoulder and wrist to the arm and club head, the way the wrist action affects the club head speed has been discussed. The sensitivity of the results to small changes in model parameter values and initial conditions was investigated. The results were also examined under different torque patterns.  相似文献   

14.
该文采用数理统计法、文献资料法、逻辑分析法等研究方法,对中国高尔夫产业的市场结构、企业行为、市场绩效及三者之间相互关系的理论与实证分析发现:中国高尔夫产业的市场绩效与市场集中度呈反向变化;中国高尔夫产业的中低度差异化制约了市场绩效的提高;高尔夫球场实施价格歧视策略有利于高尔夫球场获取垄断利润,但对高尔夫会籍实施跨时价格歧视将会使得长期利润减少。最后,根据研究结果,针对进一步提高我国高尔夫产业的绩效水平,提出了相应的对策建议。  相似文献   

15.
目的:从生物力学角度探究声音反馈训练(teaching with acoustical guidance,TAGteachTM)和传统训练方法对高尔夫初学者击球效果和挥杆动作的影响。方法:21名无高尔夫训练基础的大学生受试者随机分为声音反馈训练组(clicker training group,CG,n=11)和传统训练组(traditional training group,TG,n=10),由一名韩国职业高尔夫教练员进行5周的高尔夫挥杆动作教学训练,使用7号铁杆。训练后,对受试进行挥杆动作生物力学测试,对比两组受试者的击球效果和挥杆动作。结果:5周声音反馈训练后,CG杆速、球速、杆面角度、击球距离等击球表现指标显著优于TG(P<0.01)。挥杆动作方面,CG从上杆阶段到随挥初期挥杆时间显著小于TG(P<0.05),骨盆转动速度显著大于TG(P<0.05);CG骨盆转动角度和COM-COP倾角的标准化角加速度变化率显著小于TG(P<0.05)。结论:声音反馈是一种有效的训练辅助手段,可提升高尔夫初学者的挥杆练习效果。  相似文献   

16.
Eye movements are essential for both predictive and reactive control of complex motor skills such as the golf swing. We examined the use of a visually guided learning protocol to retrain an experienced golfer’s point-of-gaze immediately prior to execution of the full golf swing; his swing, and his gaze behaviour, had become established over more than a decade of practice and competition. Performance and eye movement data were obtained, from baseline, through intervention, to retention, for a total of 159 shots struck at a target 200 yards away. Results show that, at baseline, not only was the golfer’s point-of-gaze not at the intended/predicted location, at the top-rear of the ball, but there was also high trial-to-trial variability. A bespoke visual guidance protocol improved his gaze behaviour considerably, in terms of accuracy and consistency – and this was reflected in accuracy and consistency of his shots. Implications of oculomotor interventions for the relearning of established motor skills are discussed.  相似文献   

17.
The golfer’s body (trunk/arms/club) can be modeled as an inclined axle-chain system and the rotations of its parts observed on the functional swing plane (FSP) can represent the actual angular motions closely. The purpose of this study was to investigate the effects of pelvis-shoulders torsional separation style on the kinematic sequences employed by the axle-chain system in golf driving. Seventy-four male skilled golfers (handicap ≤ 3) were assigned to five groups based on their shoulder girdle motion and X-factor stretch characteristics: Late Shoulder Acceleration, Large Downswing Stretch, Large Backswing Stretch, Medium Total Stretch, and Small Total Stretch. Swing trials were captured by an optical system and the hip-line, thorax, shoulder-line, upper-lever, club, and wrist angular positions/velocities were calculated on the FSP. Kinematic sequences were established based on the timings of the peak angular velocities (backswing and downswing sequences) and the backswing-to-downswing transition time points (transition sequence). The backswing and transition sequences were somewhat consistent across the groups, showing full or partial proximal-to-distal sequences with minor variations. The downswing sequence was inconsistent across the groups and the angular velocity peaks of the body segments were not significantly separated. Various swing characteristics associated with the separation styles influenced the motion sequences.  相似文献   

18.
A new golf-swing robot that included a feed-forward controller in the shoulder joint and a passive wrist joint was suggested in previous studies to more closely model a skilful golfer. In this study, multiple modulation torque planning for a new golf-swing robot that is capable of modelling a skilful golfer’s swing with a delayed wrist turn was analytically examined. The twostep modulation torque included the effects of whole-body motion on shoulder acceleration, which improved the efficiency index of the swing motion and the club head speed at impact with a correctly timed wrist turn. In addition, it was demonstrated that the optimum moment of inertia and optimum design of club shaft rigidity for several types of golfers could be determined by torque planning in a virtual performance test.  相似文献   

19.
The learning advantages of an external focus of attention in golf.   总被引:1,自引:0,他引:1  
This study examined whether the learning advantages of an external focus of attention relative to an internal focus, as demonstrated by Wulf, H?ss, and Prinz (1998), would also be found for a sport skill under field-like conditions. Participants (9 women, 13 men; age range: 21-29 years) without experience in golf were required to practice pitch shots. The practice phase consisted of 80 practice trials. One group was instructed to focus on the arm swing (internal focus), whereas another group was instructed to focus on the club swing (external focus). One day after practice, a retention test of 30 trials without instructions was performed. The external-focus condition was more effective for performance during both practice and retention.  相似文献   

20.
In this article, the notable, but forgotten, history of the Royal Isle of Wight Golf Club (RIWGC), founded in 1882, is used to examine the cultural and social shifts that enabled the development of the sport's popularity across late Victorian and Edwardian society in Britain. The club can justifiably be described as notable because for a brief period this small island club was at the centre of developments which helped shape golf during this era and framed its development in the twentieth century. Two archetypally entrepreneurial Victorian gentlemen, Captain Jack Eaton and Charles John Jacobs, were central to the club's success and their endeavours underpinned the club's illustrious status. This paper examines newspaper records, periodicals and local archives to explain how the RIWGC originated and then prospered in tandem with the development of the Isle of Wight as an upmarket holiday destination. Moreover the article shows how the club provided access for both sexes of the English upper middle class to a sport and an environment that delivered the cultural benefits and the social kudos which could be derived from association with a golf club, and particularly one that was one of a select group of ‘Royal’ golf clubs. However, research also demonstrates that the club provided an environment where enterprising and talented men from less privileged backgrounds could seize the opportunity to become famous on the national and even the international stage. Finally it will demonstrate that the RIWGC had a significant role in codifying the rules of golf in the 1880s when the R&A appeared hesitant to take the lead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号