共查询到20条相似文献,搜索用时 31 毫秒
1.
空间七大距离:点点、点面、点线、线线、线面、面面距离是高中数学的一个难点,它们之间既有区别又相互联系,而两异面直线的距离又是难点中的难点.其难就在于两异面直线的公垂线需满足:①和两异面直线都垂直;②和两异面直线都相交.因此,若能突破求异面直线距离这个难点,其它距离问题便可迎刃而解.新教材全日制普通高级中学教科书(试验修订本·必修)数学第二册(下B)51页第4题:已知正方体A BCD-A'B'C'D'的棱长为1,求直线DA'与A C的距离.这道题以学生熟悉的正方体为背景,考察两异面直线距离的求法,是培养学生探究能力发散思维的好材料,也… 相似文献
2.
对于异面直线的距离,如果给出公垂线段,通过求向量的模或解三角形,总可求出公垂线段的长,即异面直线的距离,如果未给出公垂线段,有时做起来就显得有些难度。课本上就有这么一道题(见人教版高中数学第二册下B习题9.4第4题):下面就以这道题目为例谈谈异面直线距离的求法,题目如下: 相似文献
3.
4.
5.
求异面直线距离是立体几何中的一个重点 ,也是一个难点 ,学好这一内容对于点面、线面、及面面距离等后续课程的学习影响很大 .鉴于去年高考中考查了异面直线距离 ,为帮助学生学习这一内容 ,本文系统地介绍一些求异面直线距离的各种方法 ,以便开拓思路 ,扩大视野 ,同时也为综合运用各种知识打下一个坚实的基础 .1 直接法直接作出两异面直线公垂线段 ,再求这个公垂线段的长 .具体做法如下 :( 1)若异面直线a、b互相垂直 ,则可通过一条(如a)作另一条 (如b)的垂面α ,得垂足 ,然后过垂足在α内作出公垂线段 (如文中例 1( 1) ) ;( 2 )若异面… 相似文献
6.
立体几何是高中数学内容的一部分,通过对它的教学,可以培养学生的空间想象力和逻辑推理能力。我在立体几何的教学中,深切地体会到,求两条异面直线之间的距离,既是重点,又是难点。怎样求异面直线间的距离呢?本文拟对一道求异面直线距离的题目给出三种不同的解法来探讨求异面直线间距离的方法,以收抛砖引玉之效。题目:已知正方体ABCD—A'B'C'D'的棱长为1,求直线DA'与AC的距离(如图1)分析一:显然,直线DA'与AC是异面直线,此题就是求两条异面直线间的距离,关键是找出DA'与AC的公垂线。取AD的中点G,连结AC,BD交于… 相似文献
7.
8.
对于两异面直线的距离 ,尽管教学大纲上仅要求会利用给出的公垂线段计算距离 ,但新教材第二册 (下 )第 5页习题 9.8第 4题仍出现未给出公垂线段要求两异面直线距离的问题 .笔者以此题为例说明求两异面直线距离的几种方法 .原题为 :已知正方体ABCD -A′B′C′D′的棱长为 1,求直线DA′与AC的距离 .解法 1 (直接法 ,直接作出公垂线段 )如图 1,连结BD′,则由三垂线定理知BD′⊥AC ,BD′⊥DA′,BD′是DA′与AC的公垂线 .连结BD ,交AC于点O .取DD′的中点M ,连结AM ,OM ,则OM ∥BD′ .设AM交D… 相似文献
9.
两条异面直线距离求法是高中立体几何难点之一,它在高中立体几何中占有重要地位,下面介绍异面直线距离的四种求法,以拓展解题思路,提高思维效率。 相似文献
10.
11.
12.
13.
14.
15.
异面直线的距离主要有四种求解途径:1.寻找与二异面直线都垂直的直线,用平移法确定公垂线段,求其长.2.过二异面直线中的一条,作另一条的平行平面,求线,面距离.3.分别过两条异面直线作两个平行平面,求平行平面间的距离. 相似文献
16.
林义春 《宁德师专学报(自然科学版)》1996,(1)
求异面直线间的距离是中学立体几何的重点和难点,本文介绍一个求异面直线间的距离公式,利用该公式可将求异面直线间的距离直接转化成单一的三角函数值的计算. 相似文献
17.
2条异面直线所成的角是立体几何当中一个比较重要的知识点,也是高考的热点之一,本通过举例介绍求异面直线所成角的方法,供大家参考. 相似文献
18.
由于学生对异面直线的把握不象平行、相交直线那样容易,因而关于异面直线的距离的求解就感觉困难较大.本文通过一例,给出求异面直线距离的五种方法.[第一段] 相似文献
19.
求异面直线间的距离是高中数学的一个难点,难在不知该如何去寻找异面直线的公垂线,也不会将所求的问题进行转化.那么如何求异面直线的距离呢?本文介绍几种求异面直线间距离的方法,以供参考.1 直接法直接法就是根据2条异面直线间距离的定义,直接找出公垂线段,再求出长度,这是解题时首先要考虑的方法.当公垂线段能直接作出时就直接求解,此时,作出并证明异面直线的公垂线段是求异面直 相似文献
20.
在中学教学中,两异面直线间距离的寻找与求值是个难点,并且这一问题与生产实践密切相联,为使教学服务于社会、服务于生产,总结出几种求解方法。 相似文献