首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>命题在△ABC中,a、b、c分别为其三边长,R、r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥4-2r()Rabc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.由于a、b、c是三角形的三边长,所以有a+b>c,即a+b-c>0,同理有b+c-a>0,c+a-b  相似文献   

2.
《中等数学》2014,(11):10-14
第一题 设实数a、b、c满足a+b+c=1,abc>0.证明: ab+ bc+ ca<a/2abc+1/4. 证法1 因为abc>0,所以,a、b、c三个数要么为一个正数和两个负数,要么均为正数. 对于前一种情形,不妨设a>0,b<0,c<0. 则 ab+ bc+ ca=ab+c(a+b)=ab+c(1-c) <0<abc/2+1/4. 对于后一种情形,由舒尔不等式有 a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) ≥0 (→)j(a +b +c)3-4(a +b +c)(ab +bc +ca) +9abc ≥0.① 记p =ab +bc +ca,q=abc. 由式①及a+b+c=1,得1-4p +9q≥0. 从而,p≤9q/4+1/4. 因为q=abc≤(a+b/3+c)3=1/27,所以, √q≤√1/3<2/9. 于是,9q<2√q. 故p≤9q/4+1/4<2√q/4+1/4=√q/2+1/4 (→) ab+bc+ca<√abc+1/4.  相似文献   

3.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

4.
文[1]建立了如下关于三角形中线长的一个有趣的不等式:若ma,mb,mc分别是△ABC的三条中线长,R、r为△ABC外接圆和内切圆半径,则有22222ma mb mc rbc+ca+ab≥+R.研究发现并获得如下加强形式及其对偶不等式.1加强定理1若ma,mb,mc分别是△ABC的三条中线长,则有22294ma mb mcbc+ca+ab≥.(1)为证定理1,先引入以下引理:引理1设a,b,c>0,则有(b+c?a)(c+a?b)(a+b?c)≤abc.(2)(1983年瑞士数学竞赛试题)引理2设a,b,c为三角形的三边长,则有(3a?b?c)(3b?c?a)(3c?a?b)≤(b+c?a)(c+a?b)(a+b?c)(3)与a3+b3+c3+9abc≤2(a2b+b2c+c2a)+2(ab2+bc2+ca2).(4)简…  相似文献   

5.
文 [1 ]给出∑ 1a2 的上界估计 ,即设a、b、c为△ABC的三边长 ,R、r分别表示△ABC的外接圆、内切圆半径 ,则有∑ 1a2 ≤(R2 +r2 ) 2 +Rr(2R - 3r) 2R2 r3 (1 6R - 5r) .①文 [2 ]将①式加强为∑ 1a2 ≤ 14r2 .②本文给出∑ 1a2 的下界估计∑ 1a2 ≥ 12Rr.③证明 :∑ 1a2 =b2 c2 +a2 c2 +a2 b2a2 b2 c2≥(bc) (ac) +(ac) (ab) +(bc) (ab)a2 b2 c2=c+a +babc .由三角形中的恒等式a +b +c =2p(其中p为半周长 ) ,abc =4Rrp代入上式即得③ .有趣的是由②和③可得2r≤ 12r∑ 1a2≤R .这里又出现了欧拉不等式的一个隔离 .sum((1/(a~2))的下界…  相似文献   

6.
一类三元分式不等式及其证明   总被引:1,自引:1,他引:0  
本文旨在介绍几个新颖有趣的三元分式不等式,并给出它们的巧妙证明.例1已知a,b,c为满足abc=1的正数,求证:1/(2 a) 1/(2 b) 1/(2 c)≤1.证明:因bc ca ab≥3(abc)~(1/3)=3,故1-(1/(2 a) 1/(2 b) 1/(2 c)) =1-(bc ca ab 4(a b c) 12)/((2 a)(2 b)(2 c))  相似文献   

7.
1逆向思维的教材原型题与近年高考题 例1 (新课标选修4-5第25页习题 2.2第2题)已知a,b,c,∈R+,用综合法证: (ab+a+b+1)(ab+ac+bc+c2)≥16abc. 证明 (ab十a+b+1)(ab+ac+bc+c2)=(a+1) (b+1)(a+c) (b+c)≥2√a×2b×2√ac×2√bc=16abc. 例2 (2010年重庆文科第10题)若a,b,c>0,且a2+2ab+2ac+4bc=12,则ab+c的最小值是().  相似文献   

8.
董林 《中等数学》2004,(6):19-19
命题 设△ABC的三边长、外接圆半径、内切圆半径分别为a、b、c、R、r.则有b2 c22bc ≤ R2r.①证明 : 记△ABC的面积为S .由abc =4RS及S =12 r(a b c)知式①等价于b2 c22bc ≤abc(a b c)1 6S2 .②由海伦公式知1 6S2 =(a b c) (b c -a)·(c a -b) (a b -c) .③则式②等价于1 6S2 (b2 c2 ) ≤2ab2 c2 (a b c) (a b c) (b c-a) (c a -b)·(a b-c) (b2 c2 ) ≤2ab2 c2 (a b c) 2ab2 c2 - (b c -a) (c a -b)·(a b -c) (b2 c2 ) ≥0 b2 [ac2 - (b c-a) (c a -b)·(a b -c) ] c2 [ab2 - (b c-a)·(c a -b) (a …  相似文献   

9.
<正>众所周知,在△ABC中,若R、r分别为其外接圆和内切圆半径,则有R≥2r.这是著名的Euler不等式,本文给出其三个仅与边相关的最新加强.命题1在△ABC中,a、b、c为其三边长,R、r分别为其外接圆和内切圆半径,则有R/2r≥(b~2+c~2)/2bc.(1)证明记S为△ABC面积,由熟知的三角恒等式abc=4RS及S=(1/2)r(a+b+c)知,  相似文献   

10.
a3 b3 c3一3abc =(a b)3 c3一3“b(a b)一3“bc ~[(a b) c〕[(a b)2一(a十b)c cZj 一3ab(a十b十c) =(a b c)(aZ bZ cZ一ab一bc一ca). 下面举例介绍aa ba ‘3一3obc的分解因式在解题中的应用,供同学们学习时参考. 例1已知a b ‘~6,矛 夕 ‘2~14,矿 b3 ca~36,求abc的值. 解由。 b ‘~6得 a含十b盆 c,十加b Zbc十Zca=36,.’.口b bc ‘“~11.丫a3 b3 ca一3abc ~(口 b十c)(“Z bZ c足一“b一bc一c召), 1,,:。“bc~令「a“ b3 ‘3一(d b ‘)·一’一一3‘一’一’一、一’-(aZ bZ cZ一。b一bc一ea)〕 例2‘5~0. 解一合〔36一6(14一11)j一6.已…  相似文献   

11.
《中等数学》2004,(4):47-49
R、r分别表示△ABC的外接圆、内切圆半径 .证明 :设BC =a ,CA =b ,AB =c ,AP交BC于点D .由重心性质知BD =DC .因为AG =23AD ,GD =13AD ,DP =BD·DCAD =a24AD,又AD2 =12 b2 c2 - 12 a2 ,所以 ,AG·GP =23AD 13AD a24AD =29AD2 16 a2=29× 12 b2 c2 - 12 a2 16 a2=19(a2 b2 c2 ) .易知a2 b2 c2 ≥bc ca ab .故AG·GP≥ 19(bc ca ab) .①设△ABC的三边BC、CA、AB上的高分别为ha、hb、hc.易证bc =ha2R ,ca =hb2R ,ab =hc2R .故bc ca ab =2R(ha hb hc) .②又ha=a b ca ·r,hb=a b cb ·r ,hc=a …  相似文献   

12.
一道IMO预选题的推广   总被引:1,自引:0,他引:1  
第37届(1996年)IMO中有如下一道预选题:若a,b,c,∈(0,+∞),且abc=1.试证: (ab)/(a5+b5+ab)+(bc)/(b5+c5+bc)+(ca)/(c5+a5+ca)≤1.  相似文献   

13.
文[1]介绍了涉及三角形高线的不等式: r(5R-r)/R2≤h2a/bc+h2b/ca+h2c/ab≤(R+r)2/R2① 文[2]在①的基础上,建立的如下不等式: bc/h2a+ca/h2b+ab/h2c≥4 ② 文[3]建立了比②更强的如下不等式: bc/t2a+ca/t2b+ab/t2c≥4 ③  相似文献   

14.
不等式问题覆盖面广、综合性强 ,是当今各层次数学竞赛 (包括IMO)的热点和难点之一 ,而不等式问题的处理更以“多入口 ,方法巧”见长 .为了寻求规律 ,探索解题途径 ,笔者搜集了部分有关不等式问题试题 ,深入研究 ,发现许多问题都能采用柯西不等式加以简单地解决 .下面举例加以说明 .例 1 设a ,b ,c∈R+ ,求证 :ab+c+ bc+a +ca+b ≥ 32 . ( 1)( 196 3年莫斯科竞赛题 )证明 令A =a(b +c) +b(c +a) +c(a +b) =2 (ab +bc +ca) ,B =ab+c+ bc+a+ ca+b.由柯西不等式 ,有AB≥ (a+b +c) 2 ,根据基本不等式 ,有A ≤ 23(a+b +c) 2 .所以 ,B≥ 32 …  相似文献   

15.
37.已知正方形ABCD与正方形BEFG相连,且正方形ABCD的边长为a,求S△AFC.解:如图,连接BF,易证得AC∥BF.过点B、F分别作AC的垂线,垂足分别为M、N,则BM=FN.显然,则有S△AFC=S△ABC=12a2.38.若a,b,c∈R ,ab bc ca=1,求证:aa #!1 a2 b #!b1 b2 c #!c1 c2≤1.证明:分母有理化,得a$#!1 a2-a% b$#!1 b2-b% c$#!1 c2-c%≤1.上式等价于a#!1 a2 b#!1 b2 c#!1 c2≤1 (a2 b2 c2).(*)注意到1 a2=ab bc ca a2=(c a)(a b),1 b2=ab bc ca b2=(a b)(b c),1 c2=ab bc ca c2=(b c)(c a).那么,应用二元均值不等式,有a#!1 a2 b#"1 b2 c##1 c2=a#!(…  相似文献   

16.
人教版"不等式"里有一道习题:证明不等式"a2+b2+c2≥ab+bc+ca".证明过程如下:因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,所以2a2+2b2+2c2≥2ab+2bc+2ca,即a2+b2+c2≥ab+bc+ca."a2+b2+c2≥ab+bc+ca"是一个很重要的不等式,有着广泛的应用.  相似文献   

17.
代数式的恒等变形 ,是中学数学的重要内容 ,是学好数学的一项基本功 .由于等式的类型 ,形式的多样性 ,因此必须掌握丰富的基础知识 ,采用灵活多变的技能技巧 ,对等式进行变形 ,下面根据题的类型 ,举例说明代数式恒等变形的常用方法 .1 因式分解法例 1 求证 :a3 (b c) b3 (c a) c3 (a b) abc(a b c) =(ab bc ca) (a2 b2 c2 ) .分析 等式左边较繁 ,选择从左到右证法 ,对左边进行变形整理 ,考虑到右边是两个因式的乘积 ,因此将左边进行因式分解 .证明 左边 =a3 b a3 c b3 c b3 a c3 a c3 b a2 bc ab2 c abc2 .=a2 (ab bc ca) b…  相似文献   

18.
设△ABC的三边长、外接圆半径、内切圆半径、半周长与面积分别为a,b,c,R,r,s,Δ,∑表示循环求和.引理1在△ABC中,有Δ=abc/4R=sr=s(s-a)(s-b)(s-c);∑ab=s2+4Rr+r2;sin A/2=(s-b)(s-c)/bc.  相似文献   

19.
第42届国数学奥林匹克试题第2题是:对所有正实数a,b,c,证明(a)/(a2+8bc)+(b)/(b2+8ca)+(c)/(c2+8ab)≥1.文[1]采用文[3][4]的方法给出其推广为:若a,b,c∈R+,λ≥8,则(a)/(a2+λbc)+(b)/(b2+λca)+(c)/(c2+λab)≥(3)/(1+λ)(1).文[2]给出了(1)式的简证,本文进一步把(1)式推广为更一般的形式:  相似文献   

20.
新版高中数学教材第二册 (上 )有这样几道习题 .第 1 1页习题 6 .2第 1题 ,求证 :(a + b2 ) 2 ≤ a2 + b22 可以改写成 a2 + b2 ≥(a + b) 22 .第 1 6页习题 6 .3第 1 (2 )题 ,求证 :a2 + b2+ c2≥ ab+ bc+ ca可以变形为 :3 (a2 + b2 +c2 )≥ a2 + b2 + c2 + 2 (ab+ bc+ ca) ,所以 a2+ b2 + c2≥ (a + b+ c) 23 .第 3 1页第 5题 ,求证 :3 (1 + a2 + a4 )≥ (1+ a + a2 ) 2 ,则是上题的一个特例 .由此 ,我们可以推广之 ,得 :定理 :ai∈ R,i =1 ,2 ,… ,n,则当 n≥ 2时∑ni=1a2i ≥(∑ni=1ai) 2n (1 )证明 :用数学归纳法n =2时 ,a21+ a22 ≥ …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号