首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道,对于两个非零向量(→p)、(→q),其数量积定义为:(→p)·(→q)=|(→p)||(→q)|cosθ(θ是(→p)与(→q)的夹角),由此可以得到一些重要的性质,如:(→p)2=|(→p)|2,(→p)·(→q)=0(→←)(→p)⊥(→q),(→p)·(→q)≤|(→p)||(→q)|(当且仅当(→p)、(→q)同向时取等号),|(→p)·(→q)|≤|(→p)||(→q)|(当且仅当(→p)、(→q)共线时取等号)等,对于某些竞赛题,若能有针对性地构造向量,并利用上述数量积的性质,则能收到化难为易、事半功倍之效.下面试举几例加以说明.  相似文献   

2.
对于向量p,q,有不等式p@q≤|p|@|q|,当且仅当向量p与q同向时取等号.  相似文献   

3.
向量a与b的数量积公式为a·b=|a||b|cos〈a,b〉,由此得小数量积的一个性质a·b≤|a||b|。当且仅当向量a与b同向时取等号。向量a与b的数量积公式及性质在解题中有着广泛的应用,下面通过具体例题子以说明。  相似文献   

4.
<正>数量积及其性质是平面向量的重点内容,在数学的许多方面应用广泛.由数量积的定义与向量模的知识,我们不难得到如下的向量不等式:设a,b是非零向量,则a·b≤|a·b|≤|a||b|,当且仅当a,b共线时等号成立.特别地,a·b≤|a||b|,当且仅当a,b同向时等号成立.本文举例介绍数量积的上述性质在数学竞赛题求解中的应用,给人以意想不到的解题效果.  相似文献   

5.
两向量的数量积具有性质:(a-b)2≥0,当且仅当a=b时上式取"="号. 以下从几个方面举例说明其应用.  相似文献   

6.
性质 |a|~2≥(a·b)~2/|b|~2(当且仅当a与b共线时取等号)。证明 设两向量的夹角为θ,则 |a|~2=(|a|~2)·(|b|~2)/|b|~2其中当且仅当a与b共线时取等号.用性质(*)求代数最值问题,不仅可以解决常规方法不易解决的问题,而且求解思路清晰,解答过程简捷明快,解题方法新颖易懂,是新教  相似文献   

7.
<正>在学习过程中,同学们会经常遇到不等式问题,经过归纳总结以及分析感悟,我觉得对于高中阶段的不等式问题,只要掌握了基本不等式的性质及解法,其他问题都会迎刃而解。1.基本不等式:(1)a,b∈R时,a2+b2+b2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2≥2ab,当且仅当a=b时取等号;其等价形式ab≤a2+b2+b2/2,当且仅当a=b时取等号。  相似文献   

8.
余锦银 《中学教研》2007,(10):30-31
在新教材向量部分的知识中,有一些向量不等式,例如:设 a,b 为两个非零向量,则有三角不等式:|a|-|b|≤|a±b|≤|a| |b|;数量积不等式:a·b≤|a·b|≤|a|·|b|和 |a|~2≥(a·b)~2/(|b|~2),当且仅当 a 与 b 共线(同向或反向)时,等号成立。我们可以借助这些向量不等式来解决一些具有相似结构特征的代数不等式问题,其中数量积的定义及其坐  相似文献   

9.
<正>向量的数量积有两个简单而又有趣的性质,利用它们可以轻松地解决某些问题,下面就此作一些介绍.性质1(数量积不等式)|a·b|≤|a||b|.证明设向量a,b的夹角为θ,则|a·b|=|a||b||cosθ|≤|a||b|.由于0°≤θ≤180°,故当且仅当θ=0或θ=180时,取"=".当θ=0°时,a·b=|a  相似文献   

10.
正人教版必修五给出了基本不等式a+b2≥槡ab(a0,b0),当且仅当a=b时取等号.其变形有:(a+b2)2≥ab;a2+b2≥12(a+b)2.应用基本不等式的条件:①正数;②和定或积定;③相等.基本不等式的一个应用就是求最值.有以下四类问题:一、隐含积定型若a0,b0且a+b的和为定值p,则积ab有最大值ab≤p24.例1已知x0,求y=x+1x的最小值.解y=x+1x≥21x·槡x=2.(当且仅当x=1x时取"=")例2已知x1,求y=x+1x-1的最小值.解y=x+1x-1=x-1+1x-1+1≥2+1=3.(当且仅当x-1=1x-1,x=2时取"=")变式已知x1,求y=x2-x+1x-1的最小值.  相似文献   

11.
我们知道,对于任意的实数a和b,有a2+ b2≥2ab(1)当且仅当a=b时取等号,若ab >0,在(1)的两边同除以ab,即得a/b+b/a≥2(2),当且仅当a=b时取等号. 在(1)中,若令u=a2,v=b2,显然u≥0, v≥0。则有,当且仅当u=v时取等号,现在我们利用这些重要不等式来解一  相似文献   

12.
Hoelder不等式是指:设ak,bk〉0(k=1,2,…,n),p,q≥1以及上1/p+1/q=1,则∑k=1^n akbk≤(∑k=1^nak^p)1/p(∑k=1^nbk^q)1/q当且仅当ak与bk成比例时等号成立.  相似文献   

13.
一个不等式及其应用   总被引:1,自引:0,他引:1  
定理设x_1∈R~+(i=1,2,…,n),且p、q∈N,p≥q 则(x_1~p+x_2~p+…+x_n~p)/(x_1~q+x_2~q+…+x_n~q)≥(x_1x_2…x_n)~((p-q)/n)。 (当且仅当x_1=x_2=…=x_n时等号成立)。证明根据幂平均——算术平均不等式:若x_1∈R~+,m≥1(i=1,2,…,n),则(x_1~m+x_2~m+…+x_n~m)/n≥((x_1+x_2+…+x_n)/n)~m(当且仅当x_1+x_2=…=x_n时等号成立)。  相似文献   

14.
与函数最值相关的问题,贯穿于中学数学各章知识中,使用向量数量积a→.b→=|a→||b→|cosθ(θ为向量a→与b→的夹角)及其性质|a→·b→|≤|a→||b→|强以巧妙求解一些函数的最值,由a→·b→=|a→||b→|cosθ与三角函数的有界性可得|a→·b→|=|a→||b→|cosθ≤|a→||b→|,当且仅当a→//b→时等号成立。  相似文献   

15.
由向量的数量积公式a·b=|a||b|·cosθ(θ为向量a与b的夹角),易知|a^2|·|b|^2≥(a·b)^2,当且仅当向量a与b共线时等号成立,别看这个不等式来得容易,它的作用却不可小瞧,用它处理某些数学问题比常规方法简单得多,请看下面的例子。  相似文献   

16.
<正>1.知识具备x2≥0→(a-b)2≥0→a2+b2-2ab≥0,即:(1)a2+b2≥2ab,注意乘积为定值,平方和有最小值,当且仅当a=b时取等号.(2)ab≤a2+b22,注意平方和为定值,乘积有最大值,当且仅当a=b时取等号.若a、b∈R+,则有:(3)a+b≥2 ab%姨,乘积为定值,和有最小值,当且仅当a=b时取等号.(4)ab≤(a+b2)2,和为定值,乘积有最大值,当且仅当a=b  相似文献   

17.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

18.
一、均值不等式1.如果a,b∈R ,那么a2 b≥ab,当且仅当a=b时取等号.即若ab为定值时,当且仅当a=b时,a b有最小值2ab;若a b为定值时,当且仅当a=b时,ab有最大值a b22.2.如果a,b,c∈R ,那么a 3b c≥3abc,当且仅当a=b=c时取等号.即若abc为定值时,当且仅当a=b=c时,a b c有最小值33abc;  相似文献   

19.
Bokov不等式 :设ha、hb、hc 分别是△ABC的三边a、b、c上的高 ,r为△ABC的内切圆半径 .则∑ haha- 2r≥9.①其中∑ 表示循环和 .本文将给出式①的两种形式的加强 .命题 1 在△ABC中 ,有∑ haha- 2r≥3pr23.②其中p为△ABC的半周长 ,当且仅当△ABC为正三角形时等号成立 .证明 :令∏ 表示循环积 ,则∏ haha- 2r=∏2pra2pra - 2r=∏ pp -a=p3(p -a) (p-b) (p-c) =p3pr2 =pr2 .由三元均值不等式可得∑ haha- 2r≥3∏ haha- 2r13=3pr23.易见上式当且仅当ha=hb=hc 即a =b=c时等号成立 .由不等式p≥33r和式②可知式①成立 ,故式②强于式① …  相似文献   

20.
若a,b∈R,则(a-b)2≥0,展开括号并整理得:a(a-b)-b(a-b)≥0,即a(a-b)≥b(a-b)(*),式中当且仅当a=b时,取等号. 这个不等式说明:两实数差与被减数之积不小于此差与减数之积.用它来证明某些类型的不等式,方法简捷,颇有新意.今举例说明.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号