首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、问题的提出 高等数学教材中,把函数f(x)的全体原函数(如果存在的话)组成的函数族定义为函数f(x)的不定积分,记为∫f(x)dx。且若f(x)。连续,F'(x)=f(x)。时,则∫f(x)dx=F(x)+c(c为任意实常数) 以下记为:∫f(x)dx=F(x)+c  c∈k(k为实数集) 然而不定积分的概念到底是什么呢? 首先,∫f(x)dx不是通常的初等函数。 例如: 再分部积分2+ 上述等式按不定积分定义去解释是成立的,但若将它看成初等函数,则会引起谬误:0= 1= 2=… 因此不定积分不是初等…  相似文献   

2.
本文给出了一套全新的关于不定积分∫mcos+nsinx/acosx+bsinxdx(a^2+b^2≠0)的求解法;同时介绍了“平行微积法 ”并把这种方法应用于∫e^axsinbxdx或∫e^axcosbadx的求解。  相似文献   

3.
第五章 不定积分一、学习要点1 原函数与不定积分概念 积分是导数 (或微分 )的逆运算。F(x) ( C)求导积分f(x)〔=F′(x)〕。积分的概念并不难理解 ,在区间上的函数 f(x)和F(x) ,只要满足F′(x) =f(x) ,F(x)就是f(x)的一个原函数 ,F(x) C就是 f(x)的不定积分 ,即∫f(x)dx =F(x) C ,困难之点在于计算不定积分。2 不定积分的计算 求积分就是“倒走” ,而且还要对准走过来的脚印 ,不自如。所以 ,求积分是试探性的 ,“试求”。如同“试商”。例如 ,求∫x2 dx就需试探 ,哪一个函数 (或哪一类函数 )F(x)…  相似文献   

4.
利用被积函数本身具有的性质,即由limx→+∞xf′(x)f(x)=L,根据L值的不同判别广义积分∫+∞af(x)dx的敛散性。  相似文献   

5.
题:求函数y=cos(π6-2x)的单调递增区间有两位同学作出了以下两种解法:学生甲:因y=cosx的单调递增区间为[2kπ-π,2kπ],(k∈z),所以2kπ-π≤π6-2x≤2kπ,-kπ+π12≤x≤-kπ+7π12,(k∈z).故所求递增...  相似文献   

6.
本文首先证明了“小数部分”函数f(x)=(1/x),x∈(0,1」;0,x=0在区间「0,1)上的可积性,然后又算得了∫of(x)dx=1-c的结果,这里c=0.57721…是欧拉常数。  相似文献   

7.
成果集锦     
倒数方程的一种解法命题1x=cosθ±isinθ是方程x+1x=2cosθ的解.代入计算即知,且由棣莫佛定理知命题2若x+1x=2cosθ,则xn+1xn=2cosnθ(n∈Z).由此即知形如a0(xm+1xm)+a1(xm-1+1xm-1)+…+a...  相似文献   

8.
解答高等数学要注意观察题目的特点,广泛联想与之有关的知识,恰当地进行转换,就可使之获得简捷正确的解题方法,从而不断地提高他们分析问题和解决问题的能力。定积分中的换元积分有下列结论。“设f(x)在[-a,a]上连续,①若f(x)在[-a,a]上为偶函数,则∫a-af(x)dx=2∫a0f(x)dx.②若f(x)在[-a,0]上为奇函数,则∫a-af(x)dx=0.”应用上述结论解题,能简化定积分的计算过程。但计算定积分时应注意观察积分区间是否关于原点对称(或积分的上限和下限是否为相反数),若回答是…  相似文献   

9.
定理 设n∈N,n>2,0<nx<π2,则sinnxsinx>n+3n.(1)证明:n=3时,应用sin3x=3sinx-4sin3x,0<x<π6,从而0<sin2x<14,即知(1)成立.设n=k时,(1)成立,sin(k+1)xsinx>k+1+3k+1sin2(k+1)x>(k+1+3k+1)sin2xsin2(k+1)-sin2x>(k+3k+1)sin2x1-cos(2k+2)x-1+cos2x2>(k+3k+1)sin2xsin(k+2)x·sinkx>(k+3k+1)si…  相似文献   

10.
积分法是微分法的逆运算,但掌握积分法却比微分法困难得多。在积分中,只有少数几类特殊函数的积分(即有理函数积分,三角函数有理式积分及简单无理函数积分)有积分途径可循,而大多数积分要靠灵活运用积分性质,解析式的恒等变形以及换元法和分部法,将所求积分逐步化为熟悉的积分。可见换元法和分部法乃是积分法的重点,而换元和分部的关键则是“凑微分”。对换元法来说,就是将被积表达式g(x)dx中除一个复合函数因子f(φ(x))外的剩余部分φ'(x)dx凑成中间变量φ(x)的微分dφ(x),即:g(x)dx=f(φ(x))φ'(x)dx=f…  相似文献   

11.
sinnA+sinnB+sinnC的下界就一般△ABC来说是0,而本文主要就非钝角三角形情况,来探讨幻sinnA+sinnB+sinnC的最小值问题. 当n=1或2的时候,易证所求的下界为2,本文着重于n≥3的情况. 设y=sinnx,则y’=nsinn-1xcosx,再求导得: y”= n(n-1)sinn-2 xcosx-nsinnx =nsinn-2x[(n-1)cos2x-sin2x]. 当 tgx≤      y”≥0,此时y=sinnx是凸函数,应用有关凸函数性质可知:(1)当arctg  …  相似文献   

12.
本文给出了二元二次多项式f(x,y)=ax2+cxy+by2+dx+ey+f(1)在整数及实数范围内可分解因式的充要条件,使用所给出的方法,使得二元二次多项式的因式分解规范化,并且简单易行.一、在整数范围内分解定理1 设(1)是整系数多项式,则它可分解为因式(a1x+b1y+c1)(a2x+b2y+c2)的充要条件是(Ⅰ)ax2+dx+f=(a1x+c1)(a2x+c2),by2+ey+f=(b1y+c1)(b2y+c2),ax2+cxy+by2=(a1x+b1y)(a2x+b2y).只要比较a…  相似文献   

13.
一道三角竞赛题的推广孙猛(山东省临沂市二中276001)1990年烟台市赛题中有这样一道试题:已知sinx+cosx=1,求证sinnx+cosnx=1.此题的一般形式如下:定理1已知sinx+cosx=a,a∈〔-2,2〕,则有sinnx+cosn...  相似文献   

14.
许克用 《中学教研》2002,(4):38-40 ,F003
三角函数的积化和差公式:sinαcosβ=1/2[sin(α+β)+sin(α-β)];cosαsinβ=1/2[sin(α+β)-sin(α-β)];cosαcosβ=1/2[cos(α+β)+cos(α-β)];sinαsinβ=-1/2[cos(α+β)-cos(α-β)]  相似文献   

15.
一个应用广泛的不等式   总被引:1,自引:1,他引:0  
吴善和 《数学教学研究》2000,(1):41-42,F003
设x、y、z是任意实数,A+B+C=π,则x2+y2+z2≥2xycosC+2yzcosA+2zxcosB.(*)证 注意到A+B+C=π,将不等式(*)移项、配方、整理,该不等式等价于(x-ycosC-zcosB)2+(ysinC-zsinB)2≥0.上面不等式显然成立,故不等式(*)成立.不等式(*)揭示了任意三个实数x、y、z与满足条件A+B+C=π的三个角A、B、C的余弦值之间的一个重要关系.在解题中灵活地运用这个不等式,可使有些证明难度较大的不等式获得简洁、巧妙的证明.例1 在△ABC…  相似文献   

16.
《中学数学教学参考》1999年第5期发表了郭立军的《对八个“互化”公式不要求记忆后的思考》(以下简称《对》文),文中的两个观点值得商榷.《对》文中的观点之一是:“不要求记忆”显然比“了解”的层次还低.1990年我在高考阅卷时发现,考生在做《对》文中的例2时,有的将和差化积公式记成了cosα+cosβ=12cosα+β2·cosα-β2,有的记成了cosα+cosβ=2cos(α+β)cos(α-β),还有的记成了cosα+cosβ=-2cosα+β2cosα-β2等.虽然考生的思路与方法都正确,…  相似文献   

17.
作为数学的一种重要方法,换元法在某些多项式的因式分解中有着非常重要的作用,应用得当,能使多项式的因式分解化繁为简,易于迅速找到分解的途径.现从换元的两大类型谈谈它的应用.一、一元代换这是换元法分解因式中最常见的类型,就是将多项式的某一部分(可以是常数)看成一个整体,用一个新的字母代换,使多项式变得简明而易于分解:例1分解因式:(x2+mx+1)(x2+mx-6)-8.解令x2+mx=t,则原式=(t+1)(t-6)-8=t2-5t-14=(t+2)(t-7)=(x2+mx+2)(x2+mx-7)…  相似文献   

18.
对概念理解不透彻造成的解题错误。 例 1 把 1+cosa+isina(  a 2)化成复数的三角形式。 误解分析:解题中没有注意到, 在复数的三角形式中,模r≥0。 正确解:.故 1+cosa+isina的三角形式为:对初等函数的定义域考虑不周造成的解题错误。例 2 已知 2lg(x-2y)=1gx+lgy,求 x:y。误解:由已知可得 lg(x-2y)2=lgxy,即(x-zy)2=xy,解之得 =1或 =4。误解分析:据已知条件得x--2y>0,x>0,y>0。正确解:由已知得 =1或 。由于 X-Zy…  相似文献   

19.
今年全国高考数学理科(第20)题是:设复数z=3cosθ+i·2sinθ.求函数y=θ-argz(0<θ<π2)的最大值以及对应的θ值.一、试题的背景揭示若令z=x+yi(x,y∈R),则有x=3cosθ,y=2sinθ.{(0<θ<π2)显然,复数...  相似文献   

20.
擂题(37)(张云华提供)证明或否定:在△ABC中,有sin2A(sin2B+sin2C)≤2cos2    。 本题收到颜玉勇(安徽无为中学数学组,邮编238300)提供的解答。解答中利用了一个精巧而又普通的变换a=x+y、b=y+z、c=z+x和三角形  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号