首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
反证法是一种重要的教学方法,运用它不仅能培养学生的数学思维能力,而且能大大提高学生的分析与解题能力,本文介绍适宜用反证法证明的五类命题。  相似文献   

2.
变量代换是解数学题的一种重要策略 ,其中三角代换更是有着广泛而灵活的应用。它能使问题得到巧妙的转化 ,起到化繁为简、化难为易的作用。若运用得法 ,往往能收到事半功倍的效果。1 求最值例 1 已知 x21 6+y29=1 ,求u =x2 +2xy +y2 的最值 ,及相应的x ,y的值。解 据已知 ,可令x =4cosθ,y =3sinθ(θ∈R) ,则u =1 6cos2 θ +2 4sinθcosθ+9sin2 θ=72 cos2θ+1 2sin2θ +2 52 =2 52 sin( 2θ +φ) +2 52 ,其中cosφ =2 42 5 ,sinφ =72 5 ,且 0 <φ <π2 。由此可得 ,cos φ2 =721 0 ,sin φ2 =21 0 。当sin( 2θ +φ) =1时 ,取 2θ+…  相似文献   

3.
4.
利用三角法解平几问题,也是一种重要的数学方法,使用它解题不仅简捷明快,而且可以拓宽解题思维渠道。  相似文献   

5.
高中数学新教材第一章就有简易逻辑知识 ,其中的三个复合命题 :“p或 q”、“p且 q”、“非 p”等 ,是第一章学习的重点 ,也是难点之一。蔡上鹤先生在新教材教学问答中指出 :要正确理解上述概念 ,还要熟练掌握并灵活运用“至少” ,“最多” ,“同时” ,以及“至少有一个是  相似文献   

6.
有这样一个三角命题: 命题1 △ABC中,设角A,B,C的对边a,b,c成等差数列,则  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
众所周知 ,数学解题的过程是一个思维不断变更的过程 ,也是一个不断化归转化的过程 .因此 ,在解题中 ,我们既要发挥思维定势的积极作用 ,善于进行习惯性思维 ,又要消除思维定势的消极影响 ,善于由此及彼进行创造性思维 .基于以上认识 ,在数学归纳法教学之后 ,我又引导学生就有关例题和习题 ,通过构造数列模型给出新的证法 .这样不但重新点燃起学生兴趣的火花 ,而且使他们尝到学会创造、追求真知的乐趣 .同时 ,对教学也产生了意想不到的效果 .证明某些与自然数有关的代数恒等式例 1 证明12 +2 2 +32 +… +n2 =n(n+1) (2n +1)6 .证明 设…  相似文献   

15.
文[1]中介绍了两个三角命题:命题1若sin3θ-cos3θ=-1,则sinnθ-cosnθ=-1(n为正奇数).命题2若sin3θ cos3θ=1,则sinnθ cosnθ=1(n为正整数).笔者阅后深受启发,继续探讨发现一、命题1是命题2的特例(在命题2中用-θ换θ同时令n为奇数就得到命题1).二、命题2可以推广为:命题3若sinmθ cosmθ=1(m为正奇数),则sinnθ cosnθ=1(n为正整数).证明当m=1时,sinθ cosθ=1,∴sinθcosθ=0,∴sinθ=0cosθ=1或csionsθθ==10.∴sinnθ cosnθ=1.当m≠1时,∵sinmθ≤sin2θ,cosmθ≤cos2θ,∴sinmθ cosmθ≤sin2θ cos2θ=1.当且仅当sinmθ=sin2θco…  相似文献   

16.
本文提出了下述新的三角不等式 ∑csc~2A≥9/(∑cosA)~2≥∑sec~2(A/2)并给予了证明  相似文献   

17.
18.
19.
三角恒等式 :cosα cos(1 2 0°-α) cos(1 2 0° α) =0 ,sinα- sin(1 2 0°- α) sin(1 2 0° α) =0 .其中 α为任意角 .文 [1 ]、[2 ]先后给出了这两个恒等式的统一证法 .其实 ,笔者得以下证法更显朴素自然 ,简捷明快 !证明 记P=cosα cos(1 2 0°- α) cos(1 2 0° α) ,Q=sinα- sin(1 2 0°-α) sin(1 2 0° α) .则  P2 Q2 =3 2 [cosαcos(1 2 0°-α)- sinαsin(1 2 0°- α) ] 2 [cosαcos(1 2 0° α) sinαsin(1 2 0° α) ] 2 [cos(1 2 0°- α)·cos(1 2 0° α) - sin(1 2 0°- α) sin(1 2 0° …  相似文献   

20.
在解题过程中 ,常会遇到一些表面虽与三角无关 ,但通过三角代换 ,若能将待解决的问题化为三角函数问题 ,再借助三角函数的性质及常用的处理技巧 ,往往能简便地使这些问题得到迅速的解决。三角代换的常见题型与应用技巧列举说明如下 :1 利用正、余弦函数的值域化无理代数式为三角函数式对含有无理根式 ,且根式内为x的一元二次多项式的函数问题 ,常可利用正、余弦函数代换 ,将无理根式化为某个角的三角函数式 ,使问题简便获解。例 1 求函数 y =x 1 -2x -x2 的定义域和值域。解 由 1 -2x -x2 ≥ 0 ,得定义域x∈ [-1 -2 ,-1 2 ],∴…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号