首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanically exfoliated two-dimensional ferromagnetic materials (2D FMs) possess long-range ferromagnetic order and topologically nontrivial skyrmions in few layers. However, because of the dimensionality effect, such few-layer systems usually exhibit much lower Curie temperature (TC) compared to their bulk counterparts. It is therefore of great interest to explore effective approaches to enhance their TC, particularly in wafer-scale for practical applications. Here, we report an interfacial proximity-induced high-TC 2D FM Fe3GeTe2 (FGT) via A-type antiferromagnetic material CrSb (CS) which strongly couples to FGT. A superlattice structure of (FGT/CS)n, where n stands for the period of FGT/CS heterostructure, has been successfully produced with sharp interfaces by molecular-beam epitaxy on 2-inch wafers. By performing elemental specific X-ray magnetic circular dichroism (XMCD) measurements, we have unequivocally discovered that TC of 4-layer Fe3GeTe2 can be significantly enhanced from 140 K to 230 K because of the interfacial ferromagnetic coupling. Meanwhile, an inverse proximity effect occurs in the FGT/CS interface, driving the interfacial antiferromagnetic CrSb into a ferrimagnetic state as evidenced by double-switching behavior in hysteresis loops and the XMCD spectra. Density functional theory calculations show that the Fe-Te/Cr-Sb interface is strongly FM coupled and doping of the spin-polarized electrons by the interfacial Cr layer gives rise to the TC enhancement of the Fe3GeTe2 films, in accordance with our XMCD measurements. Strikingly, by introducing rich Fe in a 4-layer FGT/CS superlattice, TC can be further enhanced to near room temperature. Our results provide a feasible approach for enhancing the magnetic order of few-layer 2D FMs in wafer-scale and render opportunities for realizing realistic ultra-thin spintronic devices.  相似文献   

2.
Understanding the mineralogy of the Earth''s interior is a prerequisite for unravelling the evolution and dynamics of our planet. Here, we conducted high pressure-temperature experiments mimicking the conditions of the deep lower mantle (DLM, 1800–2890 km in depth) and observed surprising mineralogical transformations in the presence of water. Ferropericlase, (Mg, Fe)O, which is the most abundant oxide mineral in Earth, reacts with H2O to form a previously unknown (Mg, Fe)O2Hx (x ≤ 1) phase. The (Mg, Fe)O2Hx has a pyrite structure and it coexists with the dominant silicate phases, bridgmanite and post-perovskite. Depending on Mg content and geotherm temperatures, the transformation may occur at 1800 km for (Mg0.6Fe0.4)O or beyond 2300 km for (Mg0.7Fe0.3)O. The (Mg, Fe)O2Hx is an oxygen excess phase that stores an excessive amount of oxygen beyond the charge balance of maximum cation valences (Mg2+, Fe3+ and H+). This important phase has a number of far-reaching implications including extreme redox inhomogeneity, deep-oxygen reservoirs in the DLM and an internal source for modulating oxygen in the atmosphere.  相似文献   

3.
Complex oxides with tunable structures have many fascinating properties, though high-quality complex oxide epitaxy with precisely controlled composition is still out of reach. Here we have successfully developed solution-based single-crystalline epitaxy for multiferroic (1-x)BiTi(1-y)/2FeyMg(1-y)/2O3–(x)CaTiO3 (BTFM–CTO) solid solution in large area, confirming its ferroelectricity at the atomic scale with strong spontaneous polarization. Careful compositional tuning leads to a bulk magnetization of 0.07 ± 0.035 μB/Fe at room temperature, enabling magnetically induced polarization switching exhibiting a large magnetoelectric coefficient of 2.7–3.0 × 10−7 s/m. This work demonstrates the great potential of solution processing in large-scale complex oxide epitaxy and establishes novel room-temperature magnetoelectric coupling in epitaxial BTFM–CTO film, making it possible to explore a much wider space of composition, phase, and structure that can be easily scaled up for industrial applications.  相似文献   

4.
Understanding the correlation between exposed surfaces and performances of controlled nanocatalysts can aid effective strategies to enhance electrocatalysis, but this is as yet unexplored for the nitrogen reduction reaction (NRR). Here, we first report controlled synthesis of well-defined Pt3Fe nanocrystals with tunable morphologies (nanocube, nanorod and nanowire) as ideal model electrocatalysts for investigating the NRR on different exposed facets. The detailed electrocatalytic studies reveal that the Pt3Fe nanocrystals exhibit shape-dependent NRR electrocatalysis. The optimized Pt3Fe nanowires bounded with high-index facets exhibit excellent selectivity (no N2H4 is detected), high activity with NH3 yield of 18.3 μg h−1 mg−1cat (0.52 μg h−1 cm−2ECSA; ECSA: electrochemical active surface area) and Faraday efficiency of 7.3% at −0.05 V versus reversible hydrogen electrode, outperforming the {200} facet-enclosed Pt3Fe nanocubes and {111} facet-enclosed Pt3Fe nanorods. They also show good stability with negligible activity change after five cycles. Density functional theory calculations reveal that, with high-indexed facet engineering, the Fe-3d band is an efficient d-d coupling correlation center for boosting the Pt 5d-electronic exchange and transfer activities towards the NRR.  相似文献   

5.
As the reaction product of subducted water and the iron core, FeO2 with more oxygen than hematite (Fe2O3) has been recently recognized as an important component in the D” layer just above the Earth''s core-mantle boundary. Here, we report a new oxygen-excess phase (Mg, Fe)2O3+δ (0 < δ < 1, denoted as ‘OE-phase’). It forms at pressures greater than 40 gigapascal when (Mg, Fe)-bearing hydrous materials are heated over 1500 kelvin. The OE-phase is fully recoverable to ambient conditions for ex situ investigation using transmission electron microscopy, which indicates that the OE-phase contains ferric iron (Fe3+) as in Fe2O3 but holds excess oxygen through interactions between oxygen atoms. The new OE-phase provides strong evidence that H2O has extraordinary oxidation power at high pressure. Unlike the formation of pyrite-type FeO2Hx which usually requires saturated water, the OE-phase can be formed with under-saturated water at mid-mantle conditions, and is expected to be more ubiquitous at depths greater than 1000 km in the Earth''s mantle. The emergence of oxygen-excess reservoirs out of primordial or subducted (Mg, Fe)-bearing hydrous materials may revise our view on the deep-mantle redox chemistry.  相似文献   

6.
The search for unconventional superconductivity in Weyl semimetal materials is currently an exciting pursuit, since such superconducting phases could potentially be topologically non-trivial and host exotic Majorana modes. The layered material TaIrTe4 is a newly predicted time-reversal invariant type II Weyl semimetal with the minimum number of Weyl points. Here, we report the discovery of surface superconductivity in Weyl semimetal TaIrTe4. Our scanning tunneling microscopy/spectroscopy (STM/STS) visualizes Fermi arc surface states of TaIrTe4 that are consistent with the previous angle-resolved photoemission spectroscopy results. By a systematic study based on STS at ultralow temperature, we observe uniform superconducting gaps on the sample surface. The superconductivity is further confirmed by electrical transport measurements at ultralow temperature, with an onset transition temperature (Tc) up to 1.54 K being observed. The normalized upper critical field h*(T/Tc) behavior and the stability of the superconductivity against the ferromagnet indicate that the discovered superconductivity is unconventional with the p-wave pairing. The systematic STS, and thickness- and angular-dependent transport measurements reveal that the detected superconductivity is quasi-1D and occurs in the surface states. The discovery of the surface superconductivity in TaIrTe4 provides a new novel platform to explore topological superconductivity and Majorana modes.  相似文献   

7.
Contact interface properties are important in determining the performances of devices that are based on atomically thin two-dimensional (2D) materials, especially for those with short channels. Understanding the contact interface is therefore important to design better devices. Herein, we use scanning transmission electron microscopy, electron energy loss spectroscopy, and first-principles calculations to reveal the electronic structures within the metallic (1T)-semiconducting (2H) MoTe2 coplanar phase boundary across a wide spectral range and correlate its properties to atomic structures. We find that the 2H-MoTe2 excitonic peaks cross the phase boundary into the 1T phase within a range of approximately 150 nm. The 1T-MoTe2 crystal field can penetrate the boundary and extend into the 2H phase by approximately two unit-cells. The plasmonic oscillations exhibit strong angle dependence, that is a red-shift of π+σ (approximately 0.3–1.2 eV) occurs within 4 nm at 1T/2H-MoTe2 boundaries with large tilt angles, but there is no shift at zero-tilted boundaries. These atomic-scale measurements reveal the structure–property relationships of the 1T/2H-MoTe2 boundary, providing useful information for phase boundary engineering and device development based on 2D materials.  相似文献   

8.
MXenes are one of the key materials for micro-supercapacitors (MSCs), integrating miniaturized energy-storage components with microelectronics. However, the energy densities of MSCs are greatly hampered by MXenes’ narrow working potential window (typically ≤0.6 V) in aqueous electrolytes. Here, we report the fabrication of high-voltage MXene-MSCs through the efficient regulation of reaction kinetics in 2D Ti3C2Tx MXene microelectrodes using a water-in-LiCl (WIL, 20 m LiCl) salt gel electrolyte. Importantly, the intrinsic energy-storage mechanism of MXene microelectrodes in WIL, which is totally different from traditional electrolytes (1 m LiCl), was revealed through insitu and exsitu characterizations. We validated that the suppression of MXene oxidation at high anodic potential occurred due to the high content of WIL regulating anion intercalation in MXene electrodes, which effectively broadened the voltage window of MXene-MSCs. Remarkably, the symmetric planar MXene-MSCs presented a record operating voltage of 1.6 V, resulting in an exceptionally high volumetric energy density of 31.7 mWh cm−3. With the ultra-high ionic conductivity (69.5 mS cm−1) and ultralow freezing point (−57°C) of the WIL gel electrolyte, our MSCs could be operated in a wide temperature range of −40 to 60°C, and worked for a long duration even at −40°C, demonstrative of its practicality in extreme environments.  相似文献   

9.
Multiferroics are rare in nature due to the mutual exclusive origins of magnetism and ferroelectricity. The simultaneous coexistence of robust magnetism/ferroelectricity and strong magnetoelectric coupling in single multiferroics is hitherto unreported, which may also be attributed to their potential conflictions. In this paper, we show the first-principles evidence of such desired coexistence in ultrathin-layer CuCrS2 and CuCrSe2. The vertical ferroelectricity is neither induced by an empty d shell nor spin-driven, giving rise to an alternative possibility of resolving those intrinsic exclusions and contradictions. Compared with their bulk phases, the ferromagnetism in the thin-layer structures (two–six layers) can be greatly stabilized due to the enhanced carrier density and orbital shifting by vertical polarization, and the Curie temperatures of both ferromagnetism and ferroelectricity can be above room temperature. Moreover, a considerable net magnetization can be reversed upon ferroelectric switching, where the change in spin-resolved band structure also renders efficient ‘magnetic reading + electrical writing’. The thickness-different layers may even exhibit diversified types of magnetoelectric coupling, which both enriches the physics of multiferroics and facilitates their practical applications.  相似文献   

10.
The present study was designed to understand the cigarette smoking-induced alterations in hormones and the resulting changes in platelet serotonin (5-hydroxytryptamine, 5-HT) and monoamine oxidase (MAO-B) activity in chronic smokers. Human male volunteers aged 35 ± 8 years, were divided into two groups, namely controls and smokers (12 ± 2 cigarettes per day for 7–10 years). Results showed that cigarette smoking significantly (p < 0.05) elevated plasma triiodothyronine (T3), cortisol and testosterone levels with significant (p < 0.05) reduction in plasma tryptophan and thyroxin (T4). Moreover, smokers showed reduced platelet 5-HT levels and MAO-B activity. In smokers, plasma cortisol was negatively correlated with tryptophan (r = −0.386), platelet MAO-B (r = −0.264), and 5-HT (r = −0.671), and positively correlated with testosterone (r = 0.428). However, testosterone was negatively correlated with platelet MAO-B (r = −0.315), and 5-HT (r = −.419) in smokers. Further, smokers plasma T3 levels were negatively correlated with platelet MAO-B (r = −0.398), and 5-HT (r = −0.541), whereas T4 levels were positively correlated with platelet MAO-B (r = 0.369), and 5-HT (r = 0.454). In conclusion, our study showed that altered testosterone and cortisol levels may aggravate behavior, mood disturbances and symptoms of depression by decreasing platelet 5-HT and MAO-B activity in smokers.  相似文献   

11.
12.
The microscopic understanding of high-temperature superconductivity in cuprates has been hindered by the apparent complexity of crystal structures in these materials. We used scanning tunneling microscopy and spectroscopy to study the electron-doped copper oxide compound Sr1−xNdxCuO2, which has only bare cations separating the CuO2 planes and thus the simplest infinite-layer structure of all cuprate superconductors. Tunneling conductance spectra of the major CuO2 planes in the superconducting state revealed direct evidence for a nodeless pairing gap, regardless of variation of its magnitude with the local doping of trivalent neodymium. Furthermore, three distinct bosonic modes are observed as multiple peak-dip-hump features outside the superconducting gaps and their respective energies depend little on the spatially varying gaps. As well as the bosonic modes, with energies identical to those of the external, bending and stretching phonons of copper oxides, our findings reveal the origin of the bosonic modes in lattice vibrations rather than spin excitations.  相似文献   

13.
The scalable and high-efficiency production of 2D materials is a prerequisite to their commercial use. Currently, only graphene and graphene oxide can be produced on a ton scale, and the inability to produce other 2D materials on such a large scale hinders their technological applications. Here we report a grinding exfoliation method that uses micro-particles as force intermediates to resolve applied compressive forces into a multitude of small shear forces, inducing the highly efficient exfoliation of layer materials. The method, referred to as intermediate-assisted grinding exfoliation (iMAGE), can be used for the large-scale production of many 2D materials. As an example, we have exfoliated bulk h-BN into 2D h-BN with large flake sizes, high quality and structural integrity, with a high exfoliation yield of 67%, a high production rate of 0.3 g h−1 and a low energy consumption of 3.01 × 106 J g−1. The production rate and energy consumption are one to two orders of magnitude better than previous results. Besides h-BN, this iMAGE technology has been used to exfoliate various layer materials such as graphite, black phosphorus, transition metal dichalcogenides, and metal oxides, proving its universality. Molybdenite concentrate, a natural low-cost and abundant mineral, was used as a demo for the large-scale exfoliation production of 2D MoS2 flakes. Our work indicates the huge potential of the iMAGE method to produce large amounts of various 2D materials, which paves the way for their commercial application.  相似文献   

14.
15.
Honeycomb or triangular lattices were extensively studied and thought to be proper platforms for realizing the quantum anomalous Hall effect (QAHE), where magnetism is usually caused by d orbitals of transition metals. Here we propose that a square lattice can host three magnetic topological states, including the fully spin-polarized nodal loop semimetal, QAHE and the topologically trivial ferromagnetic semiconductor, in terms of the symmetry and k · p model analyses that are material independent. A phase diagram is presented. We further show that the above three magnetic topological states can indeed be implemented in the two-dimensional (2D) materials ScLiCl5, LiScZ5 (Z=Cl, Br) and ScLiBr5, respectively. The ferromagnetism in these 2D materials is microscopically revealed from p electrons of halogen atoms. This present study opens a door to explore the exotic topological states as well as quantum magnetism from p-orbital electrons by means of the material-independent approach.  相似文献   

16.
Grapes are the richest source of antioxidants due to the presence of potent bioactive phytochemicals. In this study, the phytochemical contents, scavenging activities and protective role against H2O2-induced oxidative stress in liver tissue ex vivo of four grape (Vitis vinifera) cultivars extracts, namely Flame seedless (black), Kishmish chorni (black with reddish brown), Red globe (red) and Thompson seedless mutant (green), were evaluated. The total phenolics and flavonoids content in pulp or skin fractions of different grape cultivars were in the range of 47.6–310 mg gallic acid equivalent/g fresh weight (fw), and 46.6–733.3 µg catechin equivalent/g fw respectively. The scavenging activities in skin of different grape varieties against 2,2-diphenyl-1-picrylhydrazyl (44–58 %), hydrogen peroxide (15.3–18.6 %), and hydroxyl radicals (50–85 %), were higher than pulp of the corresponding cultivars. These scavenging activities of grape extracts were found to be significantly (p < 0.01) correlated with the levels of total phenols, flavonoids and ascorbic acid. Liver tissues from goat treated with H2O2 (500 μM) showed significantly decreased GSH content by 42.9 % and activities of catalase by 50 % and glutathione reductase by 66.6 %; while increased thiobarbituric acid reactive substances and nitric oxide level by 2.53- and 0.86-fold, respectively, and activity of glutathione S-transferase by 0.96-fold. Grape skin extracts showed the stronger protective activity against H2O2-induced oxidative stress in liver tissue ex vivo, than its pulp of any cultivar; and the Flame seedless (black) cultivar showed the highest potential. In conclusion, our study suggested that the higher antioxidant potential, phytochemical contents and significant scavenging capacities in pulp and skin of grape extracts showed the protective action of grape extracts against H2O2-induced oxidative stress in liver tissue ex vivo.  相似文献   

17.
IntroductionBlood gas analysis (BGA) is an essential test used for years to provide vital information in critically ill patients. However, the instability of the blood gases is a problem. We aimed to evaluate time and temperature effects on blood gas stability.Materials and methodsArterial blood was collected from 20 patients into syringes. Following BGA for baseline, syringes were divided into groups to stand at 4°C and 22°C for 30, 60, 90, 120 minutes. All were tested for pH, partial pressure of carbon dioxide (pCO2), partial pressure of oxygen (pO2), oxygen saturation (sO2), oxyhemoglobin (O2Hb), sodium, potassium, glucose, lactate, oxygen tension at 50% hemoglobin saturation (p50), and bicarbonate. A subgroup analysis was performed to detect the effect of air on results during storage. Percentage deviations were calculated and compared against the preset quality specifications for allowable total error.ResultsAt 4°C, pO2 was the least stable parameter. At 22°C, pO2 remained stable for 120 min, pH and glucose for 90 min, lactate and pCO2 for 60 min. Glucose and lactate were stable when chilled. Air bubbles interfered pO2 regardless of temperatures, whereas pCO2 increased significantly at 22°C after 30 min, and pH decreased after 90 min. Bicarbonate, sO2, O2Hb, sodium, and potassium were the unaffected parameters.ConclusionsCorrect BGA results are essential, and arterial sample is precious. Therefore, if immediate analysis cannot be performed, up to one hour, syringes stored at room temperature will give reliable results when care is taken to minimize air within the blood gas specimen.  相似文献   

18.
The present work was aimed to study the association of one carbon genetic variants, hyperhomocysteinemia and oxidative stress markers, i.e., serum nitrite, plasma malondialdehyde (MDA) and glutathione (GSH) on intimal medial thickening (IMT) in patients with type 2 diabetes mellitus (T2D). A total number of 76 subjects from ACS Medical College and Hospital, Chennai, India were included in the study, i.e., Group I (n = 42) of T2D and Group II (n = 34) of age- and sex matched healthy controls. The glycated haemoglobin was measured by ion-exchange resin method; plasma homocysteine by Enzyme Linked Immunosorbant Assay method; serum nitrite (nitric oxide, NO), plasma MDA and GSH by spectrophotometric methods; the IMT by high frequency ultrasound. The polymorphisms of one carbon genetic variants were genotyped using polymerase chain reaction-restriction fragment length polymorphism and amplified fragment length polymorphism methods. Results indicate that methyltetrahydrofolate homocysteine methyl transferase (MTR) A2756G allele was found to be protective in T2D and the other variants were not significantly associated with T2D. Glutamate carboxypeptidase II (GCP II) C1561T (r = 0.34; p = 0.05) and methylene tetrahydrofolate reductase (MTHFR) C677T (r = 0.35; 0.04) showed positive correlation with plasma homocysteine in T2D cases. In this study, MTR A2756G allele was found to be protective in T2D; GCP II C1561T and MTHFR C677T showed positive association with plasma homocysteine in T2D cases. Among all the genetic variants, MTR A2756G was found influence IMT. RFC 1 G80A and TYMS 5′-UTR 2R3R showed synergistically interact with MTR A2756G in influencing increase in IMT.  相似文献   

19.
The quantum Hall effect (QHE) with quantized Hall resistance of h/νe2 started the research on topological quantum states and laid the foundation of topology in physics. Since then, Haldane proposed the QHE without Landau levels, showing nonzero Chern number |C| = 1, which has been experimentally observed at relatively low temperatures. For emerging physics and low-power-consumption electronics, the key issues are how to increase the working temperature and realize high Chern numbers (C > 1). Here, we report the experimental discovery of high-Chern-number QHE (C = 2) without Landau levels and C = 1 Chern insulator state displaying a nearly quantized Hall resistance plateau above the Néel temperature in MnBi2Te4 devices. Our observations provide a new perspective on topological matter and open new avenues for exploration of exotic topological quantum states and topological phase transitions at higher temperatures.  相似文献   

20.
Energy consumption dominates annual CO2 emissions in China. It is essential to significantly reduce CO2 emissions from energy consumption to reach national carbon neutrality by 2060, while the role of terrestrial carbon sequestration in offsetting energy-related CO2 emissions cannot be underestimated. Natural climate solutions (NCS), including improvements in terrestrial carbon sequestration, represent readily deployable options to offset anthropogenic greenhouse gas emissions. However, the extent to which China''s terrestrial carbon sequestration in the future, especially when target-oriented managements (TOMs) are implemented, can help to mitigate energy-related CO2 emissions is far from certain. By synthesizing available findings and using several parameter-sparse empirical models that have been calibrated and/or fitted against contemporary measurements, we assessed China''s terrestrial carbon sequestration over 2010–2060 and its contribution to offsetting national energy-related CO2 emissions. We show that terrestrial C sequestration in China will increase from 0.375 ± 0.056 (mean ± standard deviation) Pg C yr−1 in the 2010s to 0.458 ± 0.100 Pg C yr−1 under RCP2.6 and 0.493 ± 0.108 Pg C yr−1 under the RCP4.5 scenario in the 2050s, when TOMs are implemented. The majority of carbon sequestration comes from forest, accounting for 67.8–71.4% of the total amount. China''s terrestrial ecosystems can offset 12.2–15.0% and 13.4–17.8% of energy-related peak CO2 emissions in 2030 and 2060, respectively. The implementation of TOMs contributes 11.9% of the overall terrestrial carbon sequestration in the 2020s and 23.7% in the 2050s. The most likely strategy to maximize future NCS effectiveness is a full implementation of all applicable cost-effective NCS pathways in China. Our findings highlight the role of terrestrial carbon sequestration in offsetting energy-related CO2 emissions and put forward future needs in the context of carbon neutrality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号