首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an integrated microfluidic device capable of performing single-stranded DNA (ssDNA) preparation and magnetic bead-based microarray analysis with a white-light detection for detecting mutations that account for hereditary hearing loss. The entire operation process, which includes loading of streptavidin-coated magnetic beads (MBs) and biotin-labeled polymerase chain reaction products, active dispersion of the MBs with DNA for binding, alkaline denaturation of DNA, dynamic hybridization of the bead-labeled ssDNA to a tag array, and white-light detection, can all be automatically accomplished in a single chamber of the microchip, which was operated on a self-contained instrument with all the necessary components for thermal control, fluidic control, and detection. Two novel mixing valves with embedded polydimethylsiloxane membranes, which can alternately generate a 3-μl pulse flow at a peak rate of around 160 mm/s, were integrated into the chip for thoroughly dispersing magnetic beads in 2 min. The binding efficiency of biotinylated oligonucleotides to beads was measured to be 80.6% of that obtained in a tube with the conventional method. To critically test the performance of this automated microsystem, we employed a commercial microarray-based detection kit for detecting nine mutation loci that account for hereditary hearing loss. The limit of detection of the microsystem was determined as 2.5 ng of input K562 standard genomic DNA using this kit. In addition, four blood samples obtained from persons with mutations were all correctly typed by our system in less than 45 min per run. The fully automated, “amplicon-in-answer-out” operation, together with the white-light detection, makes our system an excellent platform for low-cost, rapid genotyping in clinical diagnosis.  相似文献   

2.
To develop a lab on a chip (LOC) integrated with both sensor and actuator functions, a novel two-in-one system based on optical-driven manipulation and sensing in a microfluidics setup based on a hydrogenated amorphous silicon (a-Si:H) layer on an indium tin oxide/glass is first realized. A high-intensity discharge xenon lamp functioned as the light source, a chopper functioned as the modulated illumination for a certain frequency, and a self-designed optical path projected on the digital micromirror device controlled by the digital light processing module was established as the illumination input signal with the ability of dynamic movement of projected patterns. For light-addressable potentiometric sensor (LAPS) operation, alternating current (AC)-modulated illumination with a frequency of 800 Hz can be generated by the rotation speed of the chopper for photocurrent vs bias voltage characterization. The pH sensitivity, drift coefficient, and hysteresis width of the Si3N4 LAPS are 52.8 mV/pH, −3.2 mV/h, and 10.5 mV, respectively, which are comparable to the results from the conventional setup. With an identical two-in-one system, direct current illumination without chopper rotation and an AC bias voltage can be provided to an a-Si:H chip with a manipulation speed of 20 μm/s for magnetic beads with a diameter of 1 μm. The collection of magnetic beads by this light-actuated AC electroosmosis (LACE) operation at a frequency of 10 kHz can be easily realized. A fully customized design of an illumination path with less decay can be suggested to obtain a high efficiency of manipulation and a high signal-to-noise ratio of sensing. With this proposed setup, a potential LOC system based on LACE and LAPS is verified with the integration of a sensor and an actuator in a microfluidics setup for future point-of-care testing applications.  相似文献   

3.
Human mesenchymal stem cells (hMSCs) have three key properties that make them desirable for stem cell therapeutics: differentiation capacity, trophic activity, and ability to self-renew. However, current separation techniques are inefficient, time consuming, expensive, and, in some cases, alter hMSCs cellular function and viability. Dielectrophoresis (DEP) is a technique that uses alternating current electric fields to spatially separate biological cells based on the dielectric properties of their membrane and cytoplasm. This work implements the first steps toward the development of a continuous cell sorting microfluidic device by characterizing native hMSCs dielectric signatures and comparing them to hMSCs morphologically standardized with a polymer. A quadrapole Ti-Au electrode microdevice was used to observe hMSC DEP behaviors, and quantify frequency spectra and cross-over frequency of hMSCs from 0.010–35 MHz in dextrose buffer solutions (0.030 S/m and 0.10 S/m). This combined approach included a systematic parametric study to fit a core-shell model to the DEP spectra over the entire tested frequency range, adding robustness to the analysis technique. The membrane capacitance and permittivity were found to be 2.2 pF and 2.0 in 0.030 S/m and 4.5 pF and 4.1 in 0.10 S/m, respectively. Elastin-like polypeptide (ELP-) polyethyleneimine (PEI) copolymer was used to control hMSCs morphology to spheroidal cells and aggregates. Results demonstrated that ELP-PEI treatment controlled hMSCs morphology, increased experiment reproducibility, and concurrently increased hMSCs membrane permittivity to shift the cross-over frequency above 35 MHz. Therefore, ELP-PEI treatment may serve as a tool for the eventual determination of biosurface marker-dependent DEP signatures and hMSCs purification.  相似文献   

4.
We propose an alternate fabrication technique of microchannel resonators based on an assembly method of three separate parts to form a microchannel resonator on a chip. The capability of the assembled microchannel resonator to detect mass is confirmed by injecting two liquids with different densities. The experimental and theoretical values of the resonator frequency shift are in agreement with each other, which confirms the consistency of the device. The noise level of the device is estimated from the Allan variance plot, so the minimum detectable mass of 230 fg after 16 s of operation is expected. By considering the time of the practical application of 1 ms, it is found that a detectable mass of around 8.51 pg is estimated, which is applicable for detecting flowing microparticles. The sub-pico to a few picogram levels of detection will be applicable for the mass analysis of flowing microparticles such as single cells and will be greatly beneficial for many fields such as chemistry, medicine, biology, and single-cell analysis.  相似文献   

5.
Cytokines are small proteins secreted by leukocytes in blood in response to infections, thus offering valuable diagnostic information. Given that the same cytokines may be produced by different leukocyte subsets in blood, it is beneficial to connect production of cytokines to specific cell types. In this paper, we describe integration of antibody (Ab) microarrays into a microfluidic device to enable enhanced cytokine detection. The Ab arrays contain spots specific to cell-surface antigens as well as anti-cytokine detection spots. Infusion of blood into a microfluidic device results in the capture of specific leukocytes (CD4 T-cells) and is followed by detection of secreted cytokines on the neighboring Ab spots using sandwich immunoassay. The enhancement of cytokine signal comes from leveraging the concept of reconfigurable microfluidics. A three layer polydimethylsiloxane microfluidic device is fabricated so as to contain six microchambers (1 mm × 1 mm × 30 μm) in the ceiling of the device. Once the T-cell capture is complete, the device is reconfigured by withdrawing liquid from the channel, causing the chambers to collapse onto Ab arrays and enclose cell/anti-cytokine spots within a 30 nl volume. In a set of proof-of-concept experiments, we demonstrate that ∼90% pure CD4 T-cells can be captured inside the device and that signals for three important T-cell secreted cytokines, tissue necrosis factor-alpha, interferon-gamma, and interleukin-2, may be enhanced by 2 to 3 folds through the use of reconfigurable microfluidics.  相似文献   

6.
We report a refillable and valveless drug delivery device actuated by an external magnetic field for on-demand drug release to treat localized diseases. The device features a pear-shaped viscoelastic magnetic membrane inducing asymmetrical deflection and consecutive touchdown motion to the bottom of the dome-shaped drug reservoir in response to a magnetic field, thus achieving controlled discharge of the drug. Maximum drug release with 18 ± 1.5 μg per actuation was achieved under a 500 mT magnetic flux density, and various controlled drug doses were investigated with the combination of the number of accumulated actuations and the strength of the magnetic field.  相似文献   

7.
The T-shaped microchannel system is used to mix similar or different fluids, and the laminar flow nature makes the mixing at the entrance junction region a challenging task. Acoustic streaming is a steady vortical flow phenomenon that can be produced in the microchannel by oscillating acoustic transducer around the sharp edge tip structure. In this study, the acoustic streaming is produced using a triangular structure with tip angles of 22.62°, 33.4°, and 61.91°, which is placed at the entrance junction region and mixes the inlets flow from two directions. The acoustic streaming flow patterns were investigated using micro-particle image velocimetry (μPIV) in various tip edge angles, flow rate, oscillation frequency, and amplitude. The velocity and vorticity profiles show that a pair of counter-rotating streaming vortices were created around the sharp triangle structure and raised the Z vorticity up to 10 times more than the case without acoustic streaming. The mixing experiments were performed by using fluorescent green dye solution and de-ionized water and evaluated its performance with the degree of mixing (M) at different amplitudes, flow rates, frequencies, and tip edge angles using the grayscale value of pixel intensity. The degree of mixing characterized was found significantly improved to 0.769 with acoustic streaming from 0.4017 without acoustic streaming, in the case of 0.008 μl/min flow rate and 38 V oscillation amplitude at y = 2.15 mm. The results suggested that the creation of acoustic streaming around the entrance junction region promotes the mixing of two fluids inside the microchannel, which is restricted by the laminar flow conditions.  相似文献   

8.
Label-free isolation of single cells is essential for the growing field of single-cell analysis. Here, we present a device which prints single living cells encapsulated in free-flying picoliter droplets. It combines inkjet printing and impedance flow cytometry. Droplet volume can be controlled in the range of 500 pl–800 pl by piezo actuator displacement. Two sets of parallel facing electrodes in a 50 μm × 55 μm channel are applied to measure the presence and velocity of a single cell in real-time. Polystyrene beads with <5% variation in diameter generated signal variations of 12%–17% coefficients of variation. Single bead efficiency (i.e., printing events with single beads vs. total number of printing events) was 73% ± 11% at a throughput of approximately 9 events/min. Viability of printed HeLa cells and human primary fibroblasts was demonstrated by culturing cells for at least eight days.  相似文献   

9.
Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve''s closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.  相似文献   

10.
Separation and sorting of biological entities (viruses, bacteria, and cells) is a critical step in any microfluidic lab-on-a-chip device. Acoustofluidics platforms have demonstrated their ability to use physical characteristics of cells to perform label-free separation. Bandpass-type sorting methods of medium-sized entities from a mixture have been presented using acoustic techniques; however, they require multiple transducers, lack support for various target populations, can be sensitive to flow variations, or have not been verified for continuous flow sorting of biological cells. To our knowledge, this paper presents the first acoustic bandpass method that overcomes all these limitations and presents an inherently reconfigurable technique with a single transducer pair for stable continuous flow sorting of blood cells. The sorting method is first demonstrated for polystyrene particles of sizes 6, 10, and 14.5 μm in diameter with measured purity and efficiency coefficients above 75 ± 6% and 85 ± 9%, respectively. The sorting strategy was further validated in the separation of red blood cells from white blood cells and 1 μm polystyrene particles with 78 ± 8% efficiency and 74 ± 6% purity, respectively, at a flow rate of at least 1 μl/min, enabling to process finger prick blood samples within minutes.  相似文献   

11.
The specific membrane capacitance (SMC) is an electrical parameter that correlates with both the electrical activity and morphology of the plasma membrane, which are physiological markers for cellular phenotype and health. We have developed a microfluidic device that enables impedance spectroscopy measurements of the SMC of single biological cells. Impedance spectra induced by single cells aspirated into the device are captured over a moderate frequency range (5 kHz–1 MHz). Maximum impedance sensitivity is achieved using a tapered microfluidic channel, which effectively routes electric fields across the cell membranes. The SMC is extracted by curve-fitting impedance spectra to an equivalent circuit model. From our measurement, acute myeloid leukemia (AML) cells are found to exhibit larger SMC values in hypertonic solutions as compared with those in isotonic solutions. In addition, AML cell phenotypes (AML2 and NB4) exhibiting varying metastatic potential yield distinct SMC values (AML2: 16.9 ± 1.9 mF/m2 (n = 23); NB4: 22.5 ± 4.7 mF/m2 (n = 23)). Three-dimensional finite element simulations of the microfluidic device confirm the feasibility of this approach.  相似文献   

12.
In this study, a 3D passivated-electrode, insulator-based dielectrophoresis microchip (3D πDEP) is presented. This technology combines the benefits of electrode-based DEP, insulator-based DEP, and three dimensional insulating features with the goal of improving trapping efficiency of biological species at low applied signals and fostering wide frequency range operation of the microfluidic device. The 3D πDEP chips were fabricated by making 3D structures in silicon using reactive ion etching. The reusable electrodes are deposited on second glass substrate and then aligned to the microfluidic channel to capacitively couple the electric signal through a 100 μm glass slide. The 3D insulating structures generate high electric field gradients, which ultimately increases the DEP force. To demonstrate the capabilities of 3D πDEP, Staphylococcus aureus was trapped from water samples under varied electrical environments. Trapping efficiencies of 100% were obtained at flow rates as high as 350 μl/h and 70% at flow rates as high as 750 μl/h. Additionally, for live bacteria samples, 100% trapping was demonstrated over a wide frequency range from 50 to 400 kHz with an amplitude applied signal of 200 Vpp. 20% trapping of bacteria was observed at applied voltages as low as 50 Vpp. We demonstrate selective trapping of live and dead bacteria at frequencies ranging from 30 to 60 kHz at 400 Vpp with over 90% of the live bacteria trapped while most of the dead bacteria escape.  相似文献   

13.
We here present and characterize a programmable nanoliter scale droplet-on-demand device that can be used separately or readily integrated into low cost single layer rapid prototyping microfluidic systems for a wide range of user applications. The passive microfluidic device allows external (off-the-shelf) electronically controlled pinch valves to program the delivery of nanoliter scale aqueous droplets from up to 9 different inputs to a central outlet channel. The inputs can be either continuous aqueous fluid streams or microliter scale aqueous plugs embedded in a carrier fluid, in which case the number of effective input solutions that can be employed in an experiment is no longer strongly constrained (100 s–1000 s). Both nanoliter droplet sequencing output and nanoliter-scale droplet mixing are reported with this device. Optimization of the geometry and pressure relationships in the device was achieved in several hardware iterations with the support of open source microfluidic simulation software and equivalent circuit models. The requisite modular control of pressure relationships within the device is accomplished using hydrodynamic barriers and matched resistance channels with three different channel heights, custom parallel reversible microfluidic I/O connections, low dead-volume pinch valves, and a simply adjustable array of external screw valves. Programmable sequences of droplet mixes or chains of droplets can be achieved with the device at low Hz frequencies, limited by device elasticity, and could be further enhanced by valve integration. The chip has already found use in the characterization of droplet bunching during export and the synthesis of a DNA library.  相似文献   

14.
This article describes a fabrication process for the generation of a leak proof paper based microfluidic device and a new design strategy for convenient incorporation of externally prepared test zones. Briefly, a negative photolithographic method was used to prepare the device with a partial photoresist layer on the rear of the device to block the leakage of sample. Microscopy and Field Emission Scanning Electron Microscopy data validated the formation of the photoresist layer. The partial layer of photoresist on the device channel limits sample volume to 7 ± 0.2 μl as compared to devices without the partial photoresist layer which requires a larger sample volume of 10 ± 0.1 μl. The design prototype with a customized external test zone exploits the channel protrusions on the UV exposed photoresist treated paper to bridge the externally applied test zone to the sample and absorbent zones. The partially laminated device with an external test zone has a comparatively low wicking speed of 1.8 ± 0.9 mm/min compared to the completely laminated device with an inbuilt test zone (3.3 ± 1.2 mm/min) which extends the reaction time between the analyte and reagents. The efficacy of the prepared device was studied with colorimetric assays for the non-specific detection of protein by tetrabromophenol blue, acid/base with phenolphthalein indicator, and specific detection of proteins using the HRP-DAB chemistry. The prepared device has the potential for leak proof detection of analyte, requires low sample volume, involves reduced cost of production (∼$0.03, excluding reagent and lamination cost), and enables the integration of customized test zones.  相似文献   

15.
Flow-through gold film perforated with periodically arrayed sub-wavelength nano-holes can cause extraordinary optical transmission (EOT), which has recently emerged as a label-free surface plasmon resonance sensor in biochemical detection by measuring the transmission spectral shift. This paper describes a systematic study of the effect of microfluidic field on the spectrum of EOT associated with the porous gold film. To detect biochemical molecules, the sub-micron-thick film is free-standing in a microfluidic field and thus subject to hydrodynamic deformation. The film deformation alone may cause spectral shift as measurement error, which is coupled with the spectral shift as real signal associated with the molecules. However, this microfluid-induced measurement error has long been overlooked in the field and needs to be identified in order to improve the measurement accuracy. Therefore, we have conducted simulation and analytic analysis to investigate how the microfluidic flow rate affects the EOT spectrum and verified the effect through experiment with a sandwiched device combining Au/Cr/Si3N4 nano-hole film and polydimethylsiloxane microchannels. We found significant spectral blue shift associated with even small flow rates, for example, 12.60 nm for 4.2 μl/min. This measurement error corresponds to 90 times the optical resolution of the current state-of-the-art commercially available spectrometer or 8400 times the limit of detection. This really severe measurement error suggests that we should pay attention to the microfluidic parameter setting for EOT-based flow-through nano-hole sensors and adopt right scheme to improve the measurement accuracy.  相似文献   

16.
Acoustic trapping of minute bead amounts against fluid flow allows for easy automation of multiple assay steps, using a convenient aspirate/dispense format. Here, a method based on acoustic trapping that allows sample preparation for immuno-matrix-assisted laser desorption/ionization mass spectrometry using only half a million 2.8 μm antibody covered beads is presented. The acoustic trapping is done in 200 × 2000 μm2 glass capillaries and provides highly efficient binding and washing conditions, as shown by complete removal of detergents and sample processing times of 5-10 min. The versatility of the method is demonstrated using an antibody against Angiotensin I (Ang I), a peptide hormone involved in hypotension. Using this model system, the acoustic trapping was efficient in enriching Angiotensin at 400 pM spiked in plasma samples.  相似文献   

17.
A new model for studying localised axonal stretch injury is presented, using a microfluidic device to selectively culture axons on a thin, flexible poly (dimethylsiloxane) membrane which can be deflected upward to stretch the axons. A very mild (0.5% strain) or mild stretch injury (5% strain) was applied to primary cortical neurons after 7 days growth in vitro. The extent of distal degeneration was quantified using the degenerative index (DI, the ratio of fragmented axon area to total axon area) of axons fixed at 24 h and 72 h post injury (PI), and immunolabelled for the axon specific, microtubule associated protein-tau. At 24 h PI following very mild injuries (0.5%), the majority of the axons remained intact and healthy with no significant difference in DI when compared to the control, but at 72 h PI, the DI increased significantly (DI = 0.11 ± 0.03). Remarkably, dendritic beading in the somal compartment was observed at 24 h PI, indicative of dying back degeneration. When the injury level was increased (5% stretch, mild injury), microtubule fragmentation along the injured axons was observed, with a significant increase in DI at 24 h PI (DI = 0.17 ± 0.02) and 72 h PI (DI = 0.18 ± 0.01), relative to uninjured axons. The responses observed for both mild and very mild injuries are similar to those observed in the in vivo models of traumatic brain injury, suggesting that this model can be used to study neuronal trauma and will provide new insights into the cellular and molecular alterations characterizing the neuronal response to discrete axonal injury.  相似文献   

18.
We report on the feasible fabrication of microfluidic devices for ferroelectric polymers'' synthesis in a rapid and stable fashion. Utilizing micro-mixing and flow-focusing in microchannels, poly(vinylidene fluoride-trifluoroethylene) and copper phthalocyanine are uniformly dispersed in one hydrogel particle, which are then demonstrated to immediate and complete on-chip steady polymerization by moderate ultraviolet treatment. The advantage of our droplet-based microfluidic devices is generating versatile particles from simple spheres to disks or rods, and the lengths of particles can be precisely tuned from 30 to 400 μm through adjusting the flow rates of both disperse and oil phases. In addition, this mixed technique allows for the continuous production of dielectric microparticles with controlled dielectric properties between 10 and 160. Such a microfluidic device offers a flexible platform for multiferroic applications.  相似文献   

19.
Isolation and enumeration of circulating tumor cells (CTCs) are used to monitor metastatic disease progression and guide cancer therapy. However, currently available technologies are limited to cells expressing specific cell surface markers, such as epithelial cell adhesion molecule (EpCAM) or have limited specificity because they are based on cell size alone. We developed a device, ApoStream that overcomes these limitations by exploiting differences in the biophysical characteristics between cancer cells and normal, healthy blood cells to capture CTCs using dielectrophoretic technology in a microfluidic flow chamber. Further, the system overcomes throughput limitations by operating in continuous mode for efficient isolation and enrichment of CTCs from blood. The performance of the device was optimized using a design of experiment approach for key operating parameters such as frequency, voltage and flow rates, and buffer formulations. Cell spiking studies were conducted using SKOV3 or MDA-MB-231 cell lines that have a high and low expression level of EpCAM, respectively, to demonstrate linearity and precision of recovery independent of EpCAM receptor levels. The average recovery of SKOV3 and MDA-MB-231 cancer cells spiked into approximately 12 × 106 peripheral blood mononuclear cells obtained from 7.5 ml normal human donor blood was 75.4% ± 3.1% (n = 12) and 71.2% ± 1.6% (n = 6), respectively. The intra-day and inter-day precision coefficients of variation of the device were both less than 3%. Linear regression analysis yielded a correlation coefficient (R2) of more than 0.99 for a spiking range of 4–2600 cells. The viability of MDA-MB-231 cancer cells captured with ApoStream was greater than 97.1% and there was no difference in cell growth up to 7 days in culture compared to controls. The ApoStream device demonstrated high precision and linearity of recovery of viable cancer cells independent of their EpCAM expression level. Isolation and enrichment of viable cancer cells from ApoStream enables molecular characterization of CTCs from a wide range of cancer types.  相似文献   

20.
In this paper, we present an on-chip hand-powered membrane pump using a robust patient-to-chip syringe interface. This approach enables safe sample collection, sample containment, integrated sharps disposal, high sample volume capacity, and controlled downstream flow with no electrical power requirements. Sample is manually injected into the device via a syringe and needle. The membrane pump inflates upon injection and subsequently deflates, delivering fluid to downstream components in a controlled manner. The device is fabricated from poly(methyl methacrylate) (PMMA) and silicone, using CO2 laser micromachining, with a total material cost of ∼0.20 USD/device. We experimentally demonstrate pump performance for both deionized (DI) water and undiluted, anticoagulated mouse whole blood, and characterize the behavior with reference to a resistor-capacitor electrical circuit analogy. Downstream output of the membrane pump is regulated, and scaled, by connecting multiple pumps in parallel. In contrast to existing on-chip pumping mechanisms that typically have low volume capacity (∼5 μL) and sample volume throughput (∼1–10 μl/min), the membrane pump offers high volume capacity (up to 240 μl) and sample volume throughput (up to 125 μl/min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号