首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundThe bioethanol produced from biomass is a promising alternative fuel. The lignocellulose from marginal areas or wasteland could be a promising raw material for bioethanol production because it is present in large quantities, is cheap, renewable and has favorable environmental properties. Despite these advantages, lignocellulosic biomass is much more difficult to process than cereal grains, due to the need for intensive pretreatment and relatively large amounts of cellulases for efficient hydrolysis. Therefore, there is a need to develop an efficient and cost-effective method for the degradation and fermentation of lignocellulosic biomass to ethanol.ResultsThe usefulness of lignocellulosic biomass from wasteland for the production of bioethanol using pretreatment with the aid of ionic liquids of 1-ethyl-3-methylimidazolium acetate and 1-ethyl-3-methylimidazolium chloride was evaluated in this study. The pretreatment process, enzymatic hydrolysis and alcoholic fermentation lasted a total of 10 d. The largest amounts of bioethanol were obtained from biomass originating from agricultural wasteland, in which the dominant plant was fireweed (Chamaenerion angustifolium) and from the field where the common broom (Cytisus scoparius) was the dominant.ConclusionsThe plants such as fireweed, common broom, hay and goldenrod may be useful for the production of liquid biofuels and it would be necessary in the further stage of research to establish and optimize the conditions for the technology of ethyl alcohol producing from these plant species. Enzymatic hydrolysis of biomass from agricultural wastelands results in a large increase in fermentable sugars, comparable to the enzymatic hydrolysis of rye, wheat, rice or maize straw.How to cite: Smuga-Kogut M, Piskier T, Walendzik B, et al. Assessment of wasteland derived biomass for bioethanol production. Electron J Biotechnol 2019;41. https://doi.org/10.1016/j.ejbt.2019.05.001.  相似文献   

2.
BackgroundMucor indicus is a dimorphic fungus used in the production of ethanol, oil, protein, and glucosamine. It can ferment different pentoses and hexoses; however, the yields of products highly depend on the nutrients and cultivation conditions. In this study, the effects of different morphologic forms, cultivation time and temperature, presence or absence of oxygen, carbon sources, and concentration of nitrogen source on the products of M. indicus were investigated.ResultsThe fungus with all morphologies produced high yields of ethanol, in the range of 0.32–0.43 g/g, on glucose. However, the fungus with filamentous morphology produced higher amounts of oil, protein, phosphate, and glucosamine together with ethanol, compared with other morphologies. A higher amount of oil (0.145 g/g biomass) was produced at 28°C, while the best temperature for protein and glucosamine production was 32 and 37°C, respectively. Although ethanol was produced at a higher yield (0.44 g/g) under anaerobic conditions compared with aerobic conditions (yield of 0.41 g/g), aerobic cultivation resulted in higher yields of protein (0.51 g/g biomass), glucosamine (0.16 g/g alkali insoluble material, AIM), and phosphate (0.11 g/g AIM).ConclusionsIt is not possible to have the maximum amounts of the products simultaneously. The fermentation conditions and composition of culture media determine the product yields. Carbon source type and the addition of nitrogen source are among the most influencing factors on the product yields. Moreover, all measured products were made with higher yields in cultivation on glucose, except glucosamine, which was produced with higher yields on xylose.  相似文献   

3.
BackgroundEthanol concentration (PE), ethanol productivity (QP) and sugar consumption (SC) are important values in industrial ethanol production. In this study, initial sugar and nitrogen (urea) concentrations in sweet sorghum stem juice (SSJ) were optimized for high PE (≥ 10%, v/v), QP, (≥ 2.5 g/L·h) and SC (≥ 90%) by Saccharomyces cerevisiae SSJKKU01. Then, repeated-batch fermentations under normal gravity (NG) and high gravity (HG) conditions were studied.ResultsThe initial sugar at 208 g/L and urea at 2.75 g/L were the optimum values to meet the criteria. At the initial yeast cell concentration of ~ 1 × 108 cells/mL, the PE, QP and SC were 97.06 g/L, 3.24 g/L·h and 95.43%, respectively. Repeated-batch fermentations showed that the ethanol production efficiency of eight successive cycles with and without aeration were not significantly different when the initial sugar of cycles 2 to 8 was under NG conditions (~ 140 g/L). Positive effects of aeration were observed when the initial sugar from cycle 2 was under HG conditions (180–200 g/L). The PE and QP under no aeration were consecutively lower from cycle 1 to cycle 6. Additionally, aeration affected ergosterol formation in yeast cell membrane at high ethanol concentrations, whereas trehalose content under all conditions was not different.ConclusionInitial sugar, sufficient nitrogen and appropriated aeration are necessary for promoting yeast growth and ethanol fermentation. The SSJ was successfully used as an ethanol production medium for a high level of ethanol production. Aeration was not essential for repeated-batch fermentation under NG conditions, but it was beneficial under HG conditions.How to cite: Sriputorn B, Laopaiboon P, Phukoetphim N, et al. Enhancement of ethanol production efficiency in repeated-batch fermentation from sweet sorghum stem juice: Effect of initial sugar, nitrogen and aeration. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.06.001  相似文献   

4.
BackgroundThe development of a potential single culture that can co-produce hydrogen and ethanol is beneficial for industrial application. Strain improvement via molecular approach was proposed on hydrogen and ethanol co-producing bacterium, Escherichia coli SS1. Thus, the effect of additional copy of native hydrogenase gene hybC on hydrogen and ethanol co-production by E. coli SS1 was investigated.ResultsBoth E. coli SS1 and the recombinant hybC were subjected to fermentation using 10 g/L of glycerol at initial pH 7.5. Recombinant hybC had about 2-fold higher cell growth, 5.2-fold higher glycerol consumption rate and 3-fold higher ethanol productivity in comparison to wild-type SS1. Nevertheless, wild-type SS1 reported hydrogen yield of 0.57 mol/mol glycerol and ethanol yield of 0.88 mol/mol glycerol, which were 4- and 1.4-fold higher in comparison to recombinant hybC. Glucose fermentation was also conducted for comparison study. The performance of wild-type SS1 and recombinant hybC showed relatively similar results during glucose fermentation. Additional copy of hybC gene could manipulate the glycerol metabolic pathway of E. coli SS1 under slightly alkaline condition.ConclusionsHybC could improve glycerol consumption rate and ethanol productivity of E. coli despite lower hydrogen and ethanol yields. Higher glycerol consumption rate of recombinant hybC could be an advantage for bioconversion of glycerol into biofuels. This study could serve as a useful guidance for dissecting the role of hydrogenase in glycerol metabolism and future development of effective strain for biofuels production.  相似文献   

5.
俄罗斯森林资源开发潜力与中俄合作的重点领域   总被引:2,自引:0,他引:2  
姚予龙  张新亚 《资源科学》2012,34(9):1806-1814
俄罗斯森林资源丰富,是中国木材资源进口的最主要来源地,中俄森林资源合作对两国具有非常重要的意义。本文对俄罗斯(特别是亚洲部分)森林资源空间分布、树种结构、可采林比重和森林资源开发的基础设施与技术条件等进行了系统研究,通过对森林资源总量、成过熟林比例、交通条件、开采技术能力、基础设施条件等指标的计算和分析,明确了中国与俄罗斯合作开发森林资源的潜力和重点区域,进一步探讨了中俄森林资源合作的方式和重点领域。同时指出,中俄森林资源合作要充分考虑当地资源开发、保护和贸易的有关政策及各方利益关切,实现森林资源合作的互利共赢。  相似文献   

6.
BackgroundSugars from sweet sorghum stalks can be used to produce ethanol and also to grow oleaginous yeasts. Instead of two separate processes, in this paper we propose a different route producing ethanol and microbial oil in two consecutive fermentation steps.ResultsThree yeasts were compared in the first ethanol producing step. In the second step four different oleaginous yeasts were tested. Sweet sorghum juice was first clarified and concentrated. High gravity ethanol fermentation was carried out with concentrated juice with 23.7 g/100 mL of total sugars and without added nutrients. Total sugars were 2.5 times more than the original clarified juice. One yeast gave the best overall response over the two other tested; relative high ethanol productivity, 1.44 g ethanol/L·h−1, and 90% of sugar consumption. Aeration by flask agitation produced superior results than static flasks for all yeasts. Microbial oil production was done employing the residual liquid left after ethanol separation. The pooled residual liquid from the ethanol distillation contained 7.08 g/mL of total carbohydrates, rich in reducing sugars. Trichosporon oleaginosus and Lipomyces starkeyi produced higher dry biomass, total sugar consumption and oil productivity than the other two oleaginous yeasts tested; with values around 25 g/L, 80%, and 0.55 g oil/L·h−1 respectively. However, the biomass oil content in all yeasts was relatively low in the range of 14 to 16%.ConclusionThe two step process is viable and could be considered an integral part of a consolidated biorefinery from sweet sorghum.How to cite: Rolz C, de León R, Mendizábal de Montenegro AL. Co-production of ethanol and biodiesel from sweet sorghum juice in two consecutive fermentation steps. Electron J Biotechnol 2019;41. https://doi.org/10.1016/j.ejbt.2019.05.002.  相似文献   

7.
BackgroundIn industrial yeasts, selection and breeding for resistance to multiple stresses is a focus of current research. The objective of this study was to investigate the tolerance to multiple stresses of Saccharomyces cerevisiae obtained through an adaptive laboratory evolution strategy involving a repeated liquid nitrogen freeze–thaw process coupled with multi-stress shock selection. We also assessed the related resistance mechanisms and very high-gravity (VHG) bioethanol production of this strain.ResultsElite S. cerevisiae strain YF10-5, exhibiting improved VHG fermentation capacity and stress resistance to osmotic pressure and ethanol, was isolated following ten consecutive rounds of liquid nitrogen freeze–thaw treatment followed by plate screening under osmotic and ethanol stress. The ethanol yield of YF10-5 was 16% higher than that of the parent strain during 35% (w/v) glucose fermentation. Furthermore, there was upregulation of three genes (HSP26, HSP30, and HSP104) encoding heat-shock proteins involved in the stress response, one gene (TPS1) involved in the synthesis of trehalose, and three genes (ADH1, HXK1, and PFK1) involved in ethanol metabolism and intracellular trehalose accumulation in YF10-5 yeast cells, indicating increased stress tolerance and fermentative capacity. YF10-5 also showed excellent fermentation performance during the simultaneous saccharification and fermentation of VHG sweet potato mash, producing 13.40% (w/v) ethanol, which corresponded to 93.95% of the theoretical ethanol yield.ConclusionsA multiple-stress-tolerant yeast clone was obtained using adaptive evolution by a freeze–thaw method coupled with stress shock selection. The selected robust yeast strain exhibits potential for bioethanol production through VHG fermentation.How to cite: Zhang Q, Jin Y, Fang Y, et al. Adaptive evolution and selection of stress-resistant Saccharomyces cerevisiae for very high gravity bioethanol fermentation. Electron J Biotechnol 2019;41. https://doi.org/10.1016/j.ejbt.2019.06.003  相似文献   

8.
BackgroundThe selection of new yeast strains could lead to improvements in bioethanol production. Here, we have studied the fermentative capacity of different auxotrophic mutants of Saccharomyces cerevisiae, which are routinely used as hosts for the production of heterologous proteins. It has recently been found that these strains exhibit physiological alterations and peculiar sensitivities with respect to the parental prototrophic strains from which they derive. In this work the performance of auxotrophic S. cerevisiae CEN.PK strains was compared to the corresponding prototrophic strain, to S. cerevisiae T5bV, a strain isolated from grape must and to another auxotrophic strain, S. cerevisiae BY4741.ResultsThe results indicate that the fermentative capacity of strains grown in 2% glucose was similar in all the strains tested. However, in 15% initial glucose, the auxotrophic strains exhibited a more than doubled ethanol yield on biomass (10 g g- 1dw) compared to the prototrophic strains (less than 5 g g- 1dw). Other tests have also evidenced that in medium depletion conditions, ethanol production continues after growth arrest.ConclusionsThe results highlight the capacity of auxotrophic yeast strains to produce ethanol per mass unit, in a higher amount with respect to the prototrophic ones. This leads to potential applications for auxotrophic strains of S. cerevisiae in the production of ethanol in both homogeneous and heterogeneous phases (immobilized systems). The higher ethanol yield on biomass would be advantageous in immobilized cell systems, as a reduced yeast biomass could greatly reduce the mass transfer limitations through the immobilization matrix.  相似文献   

9.
BackgroundAn effective single culture with high glycerol consumption and hydrogen and ethanol coproduction yield is still in demand. A locally isolated glycerol-consuming Escherichia coli SS1 was found to produce lower hydrogen levels under optimized ethanol production conditions. Molecular approach was proposed to improve the hydrogen yield of E. coli SS1 while maintaining the ethanol yield, particularly in acidic conditions. Therefore, the effect of an additional copy of the native hydrogenase gene hycE and recombinant clostridial hydrogenase gene hydA on hydrogen production by E. coli SS1 at low pH was investigated.ResultsRecombinant E. coli with an additional copy of hycE or clostridial hydA was used for fermentation using 10 g/L (108.7 mmol/L) of glycerol with an initial pH of 5.8. The recombinant E. coli with hycE and recombinant E. coli with hydA showed 41% and 20% higher hydrogen yield than wild-type SS1 (0.46 ± 0.01 mol/mol glycerol), respectively. The ethanol yield of recombinant E. coli with hycE (0.50 ± 0.02 mol/mol glycerol) was approximately 30% lower than that of wild-type SS1, whereas the ethanol yield of recombinant E. coli with hydA (0.68 ± 0.09 mol/mol glycerol) was comparable to that of wild-type SS1.ConclusionsInsertion of either hycE or hydA can improve the hydrogen yield with an initial pH of 5.8. The recombinant E. coli with hydA could retain ethanol yield despite high hydrogen production, suggesting that clostridial hydA has an advantage over the hycE gene in hydrogen and ethanol coproduction under acidic conditions. This study could serve as a useful guidance for the future development of an effective strain coproducing hydrogen and ethanol.  相似文献   

10.
BackgroundEndoglucanase plays a major role in initiating cellulose hydrolysis. Various wild-type strains were searched to produce this enzyme, but mostly low extracellular enzyme activities were obtained. To improve extracellular enzyme production for potential industrial applications, the endoglucanase gene of Bacillus subtilis M015, isolated from Thai higher termite, was expressed in a periplasmic-leaky Escherichia coli. Then, the crude recombinant endoglucanase (EglS) along with a commercial cellulase (Cel) was used for hydrolyzing celluloses and microbial hydrolysis using whole bacterial cells.ResultsE. coli Glu5 expressing endoglucanase at high levels was successfully constructed. It produced EglS (55 kDa) with extracellular activity of 18.56 U/mg total protein at optimal hydrolytic conditions (pH 4.8 and 50°C). EglS was highly stable (over 80% activity retained) at 40–50°C after 100 h. The addition of EglS significantly improved the initial sugar production rates of Cel on the hydrolysis of carboxymethyl cellulose (CMC), microcrystalline cellulose, and corncob about 5.2-, 1.7-, and 4.0-folds, respectively, compared to those with Cel alone. E. coli Glu5 could secrete EglS with high activity in the presence of glucose (1% w/v) and Tween 80 (5% w/v) with low glucose consumption. Microbial hydrolysis of CMC using E. coli Glu5 yielded 26 mg reducing sugar/g CMC at pH 7.0 and 37°C after 48 h.ConclusionsThe recombinant endoglucanase activity improved by 17 times compared with that of the native strain and could greatly enhance the enzymatic hydrolysis of all studied celluloses when combined with a commercial cellulase.  相似文献   

11.
BackgroundCurrent commercial production of isomalto-oligosaccharides (IMOs) commonly involves a lengthy multistage process with low yields.ResultsTo improve the process efficiency for production of IMOs, we developed a simple and efficient method by using enzyme cocktails composed of the recombinant Bacillus naganoensis pullulanase produced by Bacillus licheniformis, α-amylase from Bacillus amyloliquefaciens, barley bran β-amylase, and α-transglucosidase from Aspergillus niger to perform simultaneous saccharification and transglycosylation to process the liquefied starch. After 13 h of reacting time, 49.09% IMOs (calculated from the total amount of isomaltose, isomaltotriose, and panose) were produced.ConclusionsOur method of using an enzyme cocktail for the efficient production of IMOs offers an attractive alternative to the process presently in use.  相似文献   

12.
BackgroundFermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01.ResultsIn the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h.ConclusionsIn the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.  相似文献   

13.
BackgroundAlgae offer many advantages as biofuel sources including: high growth rates, high lipid content, the ability to grow on non-agricultural land, and the genetic versatility to improve strains rapidly and produce co-products. Research is ongoing to make algae biofuels a more financially attractive energy option; however, it is becoming evident that the economic viability of algae-based fuels may hinge upon high-value co-products. This work evaluated the feasibility of using a co-product, algae extract, as a nutrient source in cell culture media.ResultsAlgae extract prepared from autolysed Chlamydomonas reinhardtii was found to contain 3.0% protein, 9.2% total carbohydrate, and 3.9% free α-amino acid which is similar to the nutrient content of commercially available yeast extract. The effects of algae extract on the growth and metabolism of laboratory strains of Escherichia coli and Saccharomyces cerevisiae were tested by substituting algae extract for yeast extract in LB and YPAD growth media recipes. Complex laboratory media supplemented with algae extract instead of yeast extract showed markedly improved effects on the growth and metabolism of common laboratory microorganisms in all cases except ethanol production rates in yeast.ConclusionsThis study showed that algae extract derived from C. reinhardtii is similar, if not superior, to commercially available yeast extract in nutrient content and effects on the growth and metabolism of E. coli and S. cerevisiae. Bacto™ yeast extract is valued at USD $0.15–0.35 per gram, if algae extract was sold at similar prices, it would serve as a high-value co-product in algae-based fuel processes.  相似文献   

14.
BackgroundPlanctomycetes is a phylum of biofilm-forming bacteria with numerous biosynthetic gene clusters, offering a promising source of new bioactive secondary metabolites. However, the current generation of chemically defined media achieves only low biomass yields, hindering research on these species. We therefore developed a chemically defined medium for the model organism Planctopirus limnophila to increase biomass production.ResultsWe found that P. limnophila grows best with a 10 mM sodium phosphate buffer. The replacement of complex nitrogen sources with defined amino acid solutions did not inhibit growth. Screening for vitamin requirements revealed that only cyanocobalamin (B12) is needed for growth. We used response surface methodology to optimize the medium, resulting in concentrations of 10 g/L glucose, 34 mL/L Hutner’s basal salts, 23.18 mM KNO3, 2.318 mM NH4Cl and 0.02 mg/L cyanocobalamin. The analysis of amino acid consumption allowed us to develop a customized amino acid solution lacking six of the amino acids present in Aminoplasmal 10%. Fed-batch cultivation in a bioreactor using the optimized medium achieved a final ΔOD600 of 46.8 ± 0.5 after 108 h, corresponding to a cell dry weight of 13.6 ± 0.7 g/L.ConclusionsThe optimized chemically defined medium allowed us to produce larger amounts of biomass more quickly than reported in earlier studies. Further research should focus on triggering P. limnophila biofilm formation to activate the gene clusters responsible for secondary metabolism.How to cite: Kruppa OC, Gerlach D, Fan R, et al. Development of a chemically defined medium for Planctopirus limnophila to increase biomass production. Electron J Biotechnol 2021;54. https://doi.org/10.1016/j.ejbt.2021.09.002.  相似文献   

15.
IntroductionWe investigated the interference of haemolysis on ethanol testing carried out with the Synchron assay kit using an AU680 autoanalyser (Beckman Coulter, Brea, USA).Materials and methodsTwo tubes of plasma samples were collected from 20 volunteers. Mechanical haemolysis was performed in one tube, and no other intervention was performed in the other tube. After centrifugation, haemolysed and non-haemolysed samples were diluted to obtain samples with the desired free haemoglobin (Hb) values (0, 1, 2, 5, 10 g/L). A portion of these samples was then separated, and ethanol was added to the separated sample to obtain a concentration of 86.8 mmol/L ethanol. After that, these samples were diluted with ethanol-free samples with the same Hb concentration to obtain samples containing 43.4, 21.7, and 10.9 mmol/L. Each group was divided into 20 equal parts, and an ethanol test was carried out. The coefficient of variation (CV), bias, and total error (TE) values were calculated.ResultsThe TE values of haemolysis-free samples were approximately 2-5%, and the TE values of haemolysed samples were approximately 10-18%. The bias values of haemolysed samples ranged from nearly - 6.2 to - 15.7%.ConclusionsHaemolysis led to negative interference in all samples. However, based on the 25% allowable total error value specified for ethanol in the Clinical Laboratory Improvement Amendments (CLIA 88) criteria, the TE values did not exceed 25%. Consequently, ethanol concentration can be measured in samples containing free Hb up to 10 g/L.  相似文献   

16.
17.
BackgroundMutation breeding is one of the most important routes to achieving high docosahexaenoic acid (DHA) productivity using Schizochytrium. However, few selection strategies have been reported that aim to generate a high DHA content in Schizochytrium lipids.ResultsFirst, culture temperature altered the butanol tolerance of Schizochytrium limacinum B4D1. Second, S. limacinum E8 was obtained by selecting mutants with high butanol tolerance. This mutant exhibited a 17.97% lower proportion of DHA than the parent strain S. limacinum B4D1. Third, a negative selection strategy was designed in which S. limacinum F6, a mutant with poor butanol tolerance, was obtained. The proportion of DHA in S. limacinum F6 was 11.22% higher than that of parent strain S. limacinum B4D1. Finally, the performances of S. limacinum B4D1, E8 and F6 were compared. These three strains had different fatty acid profiles, but there was no statistical difference in their biomasses and lipid yields.ConclusionIt was feasible to identified the relative DHA content of S. limacinum mutants based on their butanol tolerance.  相似文献   

18.
BackgroundThe exopolysaccharides (EPS) produced by yeast exhibit physico-chemical and rheological properties, which are useful in the production of food and in the cosmetic and pharmaceutical industries as well. The effect was investigated of selected carbon sources on the biosynthesis of EPS by Candida famata and Candida guilliermondii strains originally isolated from kefirs.ResultsThe biomass yields were dependent on carbon source (sucrose, maltose, lactose, glycerol, sorbitol) and ranged from 4.13 to 7.15 g/L. The highest biomass yield was reported for C. guilliermondii after cultivation on maltose. The maximum specific productivity of EPS during cultivation on maltose was 0.505 and 0.321 for C. guilliermondii and C. famata, respectively. The highest EPS yield was found for C. guilliermondii strain. The EPS produced under these conditions contained 65.4% and 61.5% carbohydrates, respectively. The specific growth rate (μ) of C. famata in medium containing EPS as a sole carbon source was 0.0068 h-1 and 0.0138 h-1 for C. guilliermondii strain.ConclusionsThe most preferred carbon source in the synthesis of EPS for both Candida strains was maltose, wherein C. guilliermondii strain showed the higher yield of EPS biosynthesis. The carbon source affected the chemical composition of the resulting EPS and the contribution of carbohydrate in the precipitated preparation of polymers was higher during supplementation of maltose as compared to sucrose. It was also found that the EPS can be a source of carbon for the producing strains.  相似文献   

19.
BackgroundOleaginous yeasts can be grown on different carbon sources, including lignocellulosic hydrolysate containing a mixture of glucose and xylose. However, not all yeast strains can utilize both the sugars for lipogenesis. Therefore, in this study, efforts were made to isolate dual sugar-utilizing oleaginous yeasts from different sources.ResultsA total of eleven isolates were obtained, which were screened for their ability to utilize various carbohydrates for lipogenesis. One promising yeast isolate Trichosporon mycotoxinivorans S2 was selected based on its capability to use a mixture of glucose and xylose and produce 44.86 ± 4.03% lipids, as well as its tolerance to fermentation inhibitors. In order to identify an inexpensive source of sugars, nondetoxified paddy straw hydrolysate (saccharified with cellulase), supplemented with 0.05% yeast extract, 0.18% peptone, and 0.04% MgSO4 was used for growth of the yeast, resulting in a yield of 5.17 g L−1 lipids with conversion productivity of 0.06 g L−1 h−1. Optimization of the levels of yeast extract, peptone, and MgSO4 for maximizing lipid production using Box–Behnken design led to an increase in lipid yield by 41.59%. FAME analysis of single cell oil revealed oleic acid (30.84%), palmitic acid (18.28%), and stearic acid (17.64%) as the major fatty acids.ConclusionThe fatty acid profile illustrates the potential of T. mycotoxinivorans S2 to produce single cell oil as a feedstock for biodiesel. Therefore, the present study also indicated the potential of selected yeast to develop a zero-waste process for the complete valorization of paddy straw hydrolysate without detoxification.How to cite: Sagia S, Sharma A, Singh S, et al. Single cell oil production by a novel yeast Trichosporon mycotoxinivorans for complete and ecofriendly valorization of paddy straw. Electronic Journal of Biotechnology 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.009.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号