首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于某些三角问题 ,若能合理地构造向量 ,利用向量来解 ,往往可使问题得到快捷方便地解决 ,下面举例说明 .一、求角度【例 1】 若α、β∈ ( 0 ,2 ) ,求满足cosα+cosβ-cos(α + β) =32 的α ,β的值 .解 :原等式化为( 1 -cosβ)cosα+sinβsinα =32 -cosβ ①构造向量a =( 1 -cosβ ,sinβ) ,b =(cosα ,sinα) ,则a·b =( 1 -cosβ)cosα+sinβsinα=32 -cosβ ,|a|·|b|= ( 1 -cosβ) 2 +sin2 β· cos2 α+sin2 α= 2 -2cosβ因 (a·b) 2 ≤|a|2 ·|b|2 ,于是有 ( 32 -cosβ) 2 ≤ 2 -2cosβ整理得 (cosβ-12 ) 2 ≤ 0 ,∴c…  相似文献   

2.
参考公式 :三角函数的积化和差公式sinαcosβ =12 [sin(α+ β) +sin(α -β) ]cosαsinβ=12 [sin(α+ β) -sin(α-β) ]cosαcosβ =12 [cos(α + β) +cos(α-β) ]sinαsinβ =-12 [cos(α + β) -cos(α -β) ]正棱台、圆台的侧面积公式S台侧 =12 (c′+c)l,其中c′、c分别表示上、下底面周长 ,l表示斜高或母线长 .球的体积公式V球 =43 πR3,其中R表示球的半径一、选择题 (本大题共 12小题 ,每题 5分 ,共 60分 ,在每小题给出的 4个选项中 ,只有一项是符合题目要求的 )1.(文 )直线 y=2x关于x轴对称的直线方程为 (   )   (A) y=-1…  相似文献   

3.
定理 已知0 <α<π2 ,0 <β<π2 ,若α+β<π2 ,则tanαtanβ≤tan2 α+β2 ;(1)若α+β>π2 ,则tanαtanβ≥tan2 α+β2 . (2 )当且仅当α=β时,上述两式取等号.证明 tanαtanβ-tan2 α+β2=sinαsinβcosαcosβ- 1-cos(α+β)1+cos(α+β)=cos(α- β)cos(α+β) -cos(α+β)cosαcosβ[1+cos(α+β) ]=- cos(α+β) [1-cos(α- β) ]cosαcosβ[1+cos(α+β) ].∵0 <α<π2 ,0 <β<π2 .∴cosα>0 ,cosβ>0 ,1+cos(α+β) >0 ,1-cos(α- β)≥0 ,从而可知,当α+β<π2 时,tanαtanβ-tan2 α+β2 ≤0 ,即(1)成立;当α+β>π2 时,tan…  相似文献   

4.
公式“sin2α+cos2α=1”是高中三角函数问题中一个十分重要的公式,它是同角三角函数基本关系式之一,具有十分广泛的应用.在解决三角问题时,如能活用该公式,充分挖掘其潜在功能,往往可以推陈出新,给人以耳目一新的感觉.一、三角函数式的化简例1化简1-sin6α-cos6αsin2α-sin4α.解1-sin6α-cos6αsin2α-sin4α=1sin2αcos2α-sin2α+cos2αsin2αcos2α×(sin2α+cos2α)2-3sin2αcos2αsin2αcos2α=1-(1-3sin2αcos2α)sin2αcos2α=3.二、用公式求值例2已知sinθ+cosθ=15,θ(0,π),则cotθ=_____.解∵sin2θ+cos2θ=1,∴(sinθ+cos…  相似文献   

5.
有这样一道习题:已知sin2a+sinβ+cos(α-β)=2,求sina+sinβ的取值范围. 错解:令u=sinα+sinβ,则u2=sin2α+sin2β+2sinαsinβ又sin2α+sin2β+cos(α-β)=2,所以U2-2=2sinαsinβ-cos(α-β)=-cos(α+β).u2=2-cos(α+β),从而1≤u2≤3,解得-3~(1/2)≤u≤一1或1≤u≤3~(1/2). 这个答案看起来似乎简洁明了,分析透彻,但细细分析便会产生这样的疑问,即cos(α+β)能取[一1,1]上的所有值吗?  相似文献   

6.
向量作为一种工具在解题中的应用极广,巧用公式a·b≤a·b解题,方法新颖、运算简捷.本文举例说明该公式的应用.1在求值中的应用例1若α,β∈(0,π),求满足等式cosα+cosβ-cos(α+β)=23的α,β的值.解原等式可化为(1-cosβ)cosα+sinβsinα=32-cosβ.构造向量a=(1-cosβ,sinβ),b=(cosα,sinα),则a·b=(1-cosβ)2+sin2β·cos2α+sin2α=2-2cosβ,a·b=(1-cosβ)cosα+sinβsinα=32-cosβ.因为(a·b)2≤a2b2,所以(23-cosβ)2≤2-2cosβ,即(cosβ-12)2≤0,所以cosβ=21,β=3π.又α,β地位相同,故α=3π,即α=β=3π.2在求最值和值域中的…  相似文献   

7.
第1卷(选择题共50分)参考公式: 三角函数的积化和差公式sin a cos β=1/2[sin(a+β)+sin(a-β)] cos a sin β=1/2[sin(a+β)-sin(a-β)] cos a COS β=1/2[cos(a+β)+cos(a-β)]  相似文献   

8.
第1卷(选择题共50分)参考公式: 三角函数的积化和差公式sin a COS β=1/2[sin(a+β)+sin(a-β)]cos a sinβ=1/2[sin(a+β)-sin(a-β)]cos a COS β=1/2[cos(a+β)+cos(a-β)]  相似文献   

9.
参考公式:三角函数的积化和差公式 sinαcosβ=1/2[sin(α β) sin(α-β)] cosαsinβ=1/2[sin(α β)-sin(α-β)] cosαcosβ=1/2[cos(α β) cos(α-β)] sinαsinβ=-1/2[cos(α β)-cos(α-β)] 正棱台、圆台的侧面积公式S台侧=1/2(c’ c)l.其中c’、c分别表示上、下底面周长,l表示斜高或母线长球体的体积公式V球=4/3πR3.其中R表示球的半径  相似文献   

10.
参考公式三角函数的积化和差公式sinαcosβ=(1/2)[sin(α+β)+sin(α-β)],cosαsinβ=(1/2)[sin(α+β)-sin(α-β)], cosαcosβ=(1/2)[cos(α+β)+cos(α-β)],sinαsinβ=(1/2)[cos(α+β)-cos(α-β)]. 正棱台、圆台的侧面积公式:  相似文献   

11.
一、问题的提出 看这样一个数学问题:若sinαcosβ=1/2,求cosαsinβ的取值范围. 一个典型的错误解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2. 它的错误原因在于找到的约束条件不全面,仅考虑了-1≤sin(α+β)≤1.许多参考书上给出的正确的解法是: 解:因为sin(α+β)=(sinαcosβ+cosαsinβ)∈[-1,1],sinαcosβ=1/2,所以-3/2≤cosαsinβ≤1/2, 因为sin(α-β)=sinαcosβ-cosαsinβ=(1-cosαsinβ) ∈[-1,1].  相似文献   

12.
每期一题     
题:设锐角α和β满足等式 sin~2α+sin~2β=sin(α+β), 试证明α+β=1/2π。本题是第十七届苏联数学奥林匹克十年级第1题。引导学生深入探索其题设与题断间的内在联系,寻求它的种种不同的证明途径,无疑将有益于学生分析、判断、推理诸能力的增强。下面介绍该题的四种证法。证法一(分析法)将已知等式改写为sin α(sinα-cosβ)=sinβ(cosα-sinβ) 因为 sinα>0,sinβ>0,所以只能有  相似文献   

13.
在三角变换中,对于同角三角函数习惯于把sin2α cos2α化简为1,下面举例说明之.【例1】 求证1-sin6α-cos6α1-sin4α-cos4α=32分析:①易见要解决本题,只需“装腔作势”地把左边化简,且化简的结果为32②注意到左边分子、分母的次数分别为6次、4 次, 故对于分子中的“1”可代换成(sin2α cos2α)3,对于分母中的“1”代换成(sin2α cos2α)2;这样可使分子、分母都化成齐次,有利于问题的解决.证明:左边=(cos2α sin2α)3 -sin6α-cos6α(cos2α sin2α)2 -sin4α-cos4α=3(sin4α·cos2α sin2α·cos4α)2sin2α·cos2α=3sin2α·cos2…  相似文献   

14.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )= 1 ,那么 x+ y=0 .文 [1 ]给出了此题的一种证法 ,本文再给出此题的两种换元证法 ,然后给出一个新命题 .证法 1 设 x=tanα,y=tanβ,其中 α,β∈ ( - π2 ,π2 ) ,则由条件知 ,( tanα+ secα) ( tanβ+ secβ) =1 ( sinα+ 1 ) ( sinβ+ 1 ) =cosαcosβ sinα+sinβ+ 1 =cos(α+β) 2 sinα+β2 cosα-β2 +1 =1 - 2 sin2 α+β2 sin α+β2 ( sin α+β2 +sinπ-α+β2 ) =0 sin α+β2 sin 2β+π4 ·cos2α-π4 =0 .又由 α,β∈ ( - π2 ,π2 ) ,知…  相似文献   

15.
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若cosθ<0,且sin2θ>0,则角θ的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.已知α、β都是第二象限角,且cosα>cosβ,则()A.α<βB.sinα>sinβC.tanα>tanβD.cotα1,则sin2θ等于()A.-2254B.-2125C.-54D.22545.若tanAtanB=tanA tanB 1,则tan(A B)的值为()A.1B.-1C.±1D.06.sinα-cosα可化…  相似文献   

16.
例1(2004年全国高考文史类试题)设α(0,π2),若sinα=35,则2姨cos(α+π4)=()A.75B.15C.-72D.4解∵α(0,π2),sinα=35,∴cosα=45.∴2姨cos(α+π4)=2姨(cosαsinπ4-sinαcosπ4)=cosα-sinα=45-35=15,故选B.例2(2004年全国高考广西卷)已知α为锐角,且tanα=12,求sin2αcosα-sinαsin2αcos2α的值.解sin2αcosα-sinαsin2αcos2α=sinα(2cos2α-1)sin2αcos2α=sinαcos2αsin2αcos2α=sinαsin2α=12cosα.由α为锐角及tanα=12,得1cos2α=sin2α+cos2αcos2α=tan2α+1=54.∴1cosα=5姨2.∴sin2αcosα-sinαsin2αcos2α=1…  相似文献   

17.
参考公式:三角函数的积化和差公式sinαcosβ=12[sin(α+β)+sin(α-β)]cosαsinβ=12[sin(α+β)-sin(α-β)]cosαcosβ=12[cos(α+β)+cos(α-β)]sinαsinβ=-12[cos(α+β)-cos(α-β)]正棱台、圆台的侧面积公式S台侧=12(c′+c)l其中c′,c分别表示上、下底面周长,l表示斜高或母线长球体的表面积公式:S球=4πR2其中R表示球的半径一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)(理)设全集是实数集R,M={x|-2≤x≤2},N={x|x<1},则M∩N等于()A.{x|x<-2}B.{x|-2相似文献   

18.
候守一 《数学教学研究》2004,(12):42-42,F003,F004
设椭圆、双曲线的方程分别是b2 x2 +a2 y2 =a2 b2 (a >b>0 ) ,b2 x2 -a2 y2 =a2 b2 (a >0 ,b>0 ) ,且P为其图像上的一点 ,∠PF1F2 =α ,∠PF2 F1=β(0 <α <π ,0 <β<π ,F1、F2 为其焦点 ) ,则它们离心率的三角表达式分别为(1) e椭圆 =sin(α+ β)sinα +sinβ;(2 ) e双曲线 =sin(α + β)|sinα -sinβ|.证明 如图 1,∵e椭圆 =ca =2c2a =|F1F2 ||PF1|+|PF2 |=2Rsin(α+ β)2R(sinα+sinβ) =sin(α+ β)sinα+sinβ,∴e椭圆 =sin(α + β)sinα+sinβ.(2 )如图 2 ,∵e双曲线 =ca =|F1F2 |||PF1|-|PF2 ||=2R…  相似文献   

19.
三角法解几何题是较为常见的,三角法解代数题则较为少见。下面略举不同类型代数题的三角解法,其目的在于揭示三角代换法常用时机,常用范围及使用技巧。〈一〉分解因式例1.已知x~2-y~2-z~2=0试将x~3-y~3-z~3分解因式解:由已知得:y~2+z~2=x~2令y=xsinθz=xcosθ则 x~3-y~3-z~3=x~3(1-sin~3θ-cos~3θ) =x~3(sin~2θ-sin~3θ+cos~2θ-cos~3θ) =x~3[sin~2θ(1-sinθ)+cos~2θ(1-cosθ)] =x~3[(1-cos~2θ)(1-sinθ)-(1-sin~2θ)(1-cosθ)] =x~3(1-sinθ)(1-cosθ)(1+cosθ+1+sinθ) =(x-xsinθ)(x-xcosθ)(2x+xcosθ+xsinθ)  相似文献   

20.
有意识地利用习题的特点 ,对于培养学生良好的思维品质 ,逐步形成良好的数学观念 ,提高数学素养 ,具有十分重要意义 .下面就此谈谈本人看法和体会 .一、利用迷惑性 ,培养深刻性有些习题表象的迷惑性常使思维肤浅的学生误入歧途 ,因此表象的迷惑性有利于培养学生思维的深刻性 .【例 1】 已知 3sin2 α+2cos2 β =2sinα ,求sin2 α +cos2 β的取值范围 .错解 :由条件得cos2 β =sinα -32 sin2 α ,∴sin2 α+cos2 β =sin2 α+(sinα-32 sin2 α) =-12 (sinα -1 ) 2 +12 ,当sinα =-1时 ,sin2 α +cos2 β的最小值为 -32 ;当sinα =1时 ,s…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号