首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定理凸四边形的两条对角线把四边形划分成的四个小三角形中,两组对顶的两个三角形面积之积相等. 证明:如图1,记∠AOB=α,△AOB、△COD△AOD、△BOC的面积分别为S_1、S_2、S_3、S_4,则由三角形面积公式有S_1·S_2=1/2AO·BO·sinα·1/2CO·DO·sinα,S_3·S_4=1/2AO·DO·sin(180°-α)·1/2BO·CO·sin(180°-α)故得,S_1·S_2=S_3·S_4。  相似文献   

2.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

3.
证明两个图形面积相等,常用“等底等高的三角形面积相等”来证明.下面就这个定理的应用列举几例,谨供参考.例1 O 是梯形 ABCD 的对角线 AC、BD 的交点.求证:S_(△AOB)=S_(△DOC).  相似文献   

4.
如果定义T_(△HKG)=S_(△KHG),当△KHG 与△ABC 有公共内点,—S_(△KHG),当△KHG 与△ABG 无公共内点,则有如下定理:定理3 设点 O 与△ABC 共面,则T_(△BOC)+T(△AOC)+T_(△AOB)=0, (15)且 T_(△BOC)+T_(△AOC)+T_(△AOB)=S_(△ABC). (16)证明:按点 O 所在的位置讨论如下:(Ⅰ)当点 O 在△ABC 的内部或边界上时,△ABC 被分割为△BOC,△AOC 和△AOB(当 O 在边界上时,当中有的是退化三角形),所以有T_(△BOC)=S_(△BOC),T_(△AOC)=S_(△AOC),T_(△AOB)=S_(△AOB),且其和等于 S_(△ABC),即得(16)式,且根据定理2的结论1,得  相似文献   

5.
1.显然△AA1 D与△CC1 B的面积和是四边形ABCD面积的一半 ,类似地还有△BB1 A与△DD1 C的面积和也等于ABCD面积的一半 .这就说明了以上这四个三角形的面积和等于整个ABCD的面积 .你可以注意到这时周围那四个小三角形被重复计算了两次 ,而中央的四边形面积则没有被计算进去 ,说明这四个小三角形的面积总和与中央四边形的面积是相等的 .2 .不难看出 :图 1中六个直角三角形有一个公共顶点 .从该点作三条线平行于原三角形的三条边 ,就将原三角形剖分成 1 2个更小的三角形 .容易看出有阴影的和没有阴影的正好成双成对 ,而且容易证明出…  相似文献   

6.
如上图,连结BE,则三角形BDE与三角形CDE同底等高,所以面积相等,这两个三角形的面积分别减去三角形DOE的面积后,面积仍相等。即S_(△BOE)=S_(△COD)=60平方米。  相似文献   

7.
在中学数学中所涉及的三角形面积公式很多,灵活地运用它,均会收到满意的效果,其中公式S_△=1/2bcsinA为证明平面几何中两个三角形面积相等开辟了一条蹊径,下面举几例供读者参考: 例1 如图1,在△ABC中,AB=AC,D为底边上任一点,作∠BDE=∠CDF,交两腰于E、F。求证:S_(△BDF)=S_(△CDE)。  相似文献   

8.
<正>如图1,在△AOB和△COD中,两个角∠AOB和∠COD是对顶角,此时称这两个三角形△AOB和△COD为对顶三角形.由三角形的内角和定理很容易得到对顶三角形具有下面的性质:∠A+∠B=∠C+∠D.许多几何问题中都存在着对顶三角形,或添加适当的辅助线后可以构成对顶三角形.此时若能巧妙利用对顶三角形的性质,往  相似文献   

9.
如果一个三角形的一个角与另一个三角形的一个角成对顶角,那么我们把这样的两个三角形称为对顶三角形.如图1,△AOB与△COD中,∠AOB与∠COD成对顶角,则△AOB与△COD是对顶三角形.[第一段]  相似文献   

10.
<正>原题如图1,△ABC中,AB=3,AC=4,BC=5,△ABD,△ACE,△BFC都是等边三角形,求四边形ADFE的面积.分析由已知得△ABC为直角三角形,由等边三角形的性质易得△DBF≌△ABC≌△EFC.解法1最外沿大五边形等于一个正三角形+两个直角三角形,故可求其面积;用大五边形面积减去三个三角形面积即可求得结果(△ABD、△ACE、△ABC);  相似文献   

11.
陈莉 《考试》2006,(12)
例题如图,四边形BMDF和四边形ADEN都是正方形。己知△CDE的面积为6cm2,则阴影部分△ABC的面积为_____.解析显然可利用三角形面积公式S△ABC=1/2AC·BF。图中两个正方形的边长为a、b所以AF=b-a,  相似文献   

12.
定理若四边形一条对角线平行另一条对角线,则此对角线必平分该四边形的面积,其逆命题亦成立。如图1,(1)若AE=EC,则S_(△ABD)=S_(△BCD);(2)若S_(△ABD)=S_(△BCD),则AE=EC。这两个命题是显然成立的,读者可根据图1自己证明。下面举例说明它的应用。例1 如图2,在(?)ABCD中,E是对角  相似文献   

13.
结论如图1,已知D为△ABC边BC上的任一点,O为AD上一点,连结BO、CO.设△BOD、△DOC、△AOC、△AOB的面积分别为S_1、S_2、S_3、S_4.则S_1·S_3=S_2·S_4. 证分别过B、C两点作AD所在直线的垂线BE、CF,垂足为E、F,则有(BD)/(CD)=(BE)/)CF).  相似文献   

14.
我们知道:S_△=1/2ah,由此可得:同底的两个三角形的面积比等于这底上的高的比。这一命题可以推广如下: 有一条公共边的两个三角形的面积比等于这两个三角形的另一个顶点的连线被公共边所在的直线分成的两条线段的比。 即.已知:如图.AB的延长线交CD于点E 求证:S_ABC:S_ABD=CE:DE 证明:分别由点C、D向AE及其延长线作垂线CF、DG,FG为垂足,则有:S_△ABC:S_△ABD=CF:DG(1)△CEF∽△DEG(?)CF:DG=CE:DE(2)由(1),(2)得:S_△ABC:S_△ABD=CE:DE。 利用这一命题,可以较简捷地证明一些几何命题,请看以下几例: 例 1:在△ABC中任取一点O, AO、 BO、 CO与对边的交点分别是D、 E、 F,求证:  相似文献   

15.
题目如图(1),已知,四边形ABCD中,AB∥CD,M为AB的中点,S_(△DMC)、S_(△DMC)、S_(△DBC)分别表示△DMC、△DAC、△DBC的面积,那么,S_(△DMC)=S_(△DAC)+S_(△DBC)/2 ①。  相似文献   

16.
第四届初中“祖冲之杯”数学邀请赛试题中有如下一道题:如图1,任意凸四边形ABCD的对角线相交于O、记△ABO、△BCO、△CDO、△DAO的面积分别S_1、S_2、S_3、S_4、下面结论中一定正确  相似文献   

17.
面积法证题     
利用图形的面积公式,求解或证明一类几何问题,有它的独到之处.应用这种方法几乎可以解决和证明所有的几何问题,用途十分广泛.可见讨论用面积方法在几何学中的应用是极其意义的.三角形的面积公式是求多边形面积的基础,目前所用到的主要公式并不多,主要有以下几个公式:(1)已知一底及高S_△=(1/2)ah_a=(1/2)ah_b=(1/2)ch_c(2)已知两底及夹角S_△=(1/2)absinC=(1/2)bcsinA=(1/2)casinB(3)已知三边S_△=(p(p-a)(p-b)(p-c))~(1/2) 其中p=(a b c)/2一、面积法证明成比例线段问题应用三角形面积公式,可以得到一系列结论:1.等底三角形面积比,等于对应高的比,当a=a',则S_(△ABC):S_(△A'B'C')=h_a:h_(a')2.等高三角形面积比,等于底的比,当h_a=h_(a'),则S_(△ABC):S_(△A'B'C')=BC:B'C'  相似文献   

18.
<正>本文现将人教版八年级(下)中的一道习题及其逆命题在中考中的应用介绍如下,供初中师生教与学时参考.题目如图1,直线l1∥l2,△ABC与△DBC的面积相等吗?你还可以画出一些与△ABC面积相等的三角形吗?解因为l_1∥l_2,所以S_(△ABC)=S_(△DBC)(同底等高的三角形面积相等).还可以画出与△ABC面积相等的三角形若干个,只要同底BC,第三个顶点在  相似文献   

19.
第39届IMO试题解答   总被引:1,自引:0,他引:1  
1.在凸四边形ABCD中,两对角线AC与BD互相垂直,两对边AB与DC不平行,点P为线段AB及CD的垂直平分线的交点,且P在四边形ABCD的内部,证明:ABCD为圆内接四边形的充分必要条件是△ABP与△CDP的面积相等。 证明:先证必要性:即当A、B、C、D四点共圆时,有S_(△ABP)=S_(△CDP).  相似文献   

20.
AD、BE、CF 是锐角△ABC 的三条高,则△DEF 为△ABC 的垂足三角形(如图1),用S_(△ABC)、R 分别表示△ABC 的面积和外接圆半径.用 S_(△ABC)、L_(△DEF)分别表示△DEF 的面积和周长,则垂足三角形有如下性质:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号