首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionFollowing a pandemic, laboratory medicine is vulnerable to laboratory errors due to the stressful and high workloads. We aimed to examine how laboratory errors may arise from factors, e.g., flexible working order, staff displacement, changes in the number of tests, and samples will reflect on the total test process (TTP) during the pandemic period.Materials and methodsIn 12 months, 6 months before and during the pandemic, laboratory errors were assessed via quality indicators (QIs) related to TTP phases. QIs were grouped as pre-, intra- and postanalytical. The results of QIs were expressed in defect percentages and sigma, evaluated with 3 levels of performance quality: 25th, 50th and 75th percentile values.ResultsWhen the pre- and during pandemic periods were compared, the sigma value of the samples not received was significantly lower in pre-pandemic group than during pandemic group (4.7σ vs. 5.4σ, P = 0.003). The sigma values of samples transported inappropriately and haemolysed samples were significantly higher in pre-pandemic period than during pandemic (5.0σ vs. 4.9σ, 4.3σ vs. 4.1σ; P = 0.046 and P = 0.044, respectively). Sigma value of tests with inappropriate IQC performances was lower during pandemic compared to the pre-pandemic period (3.3σ vs. 3.2σ, P = 0.081). Sigma value of the reports delivered outside the specified time was higher during pandemic than pre-pandemic period (3.0σ vs. 3.1σ, P = 0.030).ConclusionIn all TTP phases, some quality indicators improved while others regressed during the pandemic period. It was observed that preanalytical phase was affected more by the pandemic.  相似文献   

2.
IntroductionThe detection and prevention of errors in the postanalytical phase can be done through the harmonization and standardization of constituent parts of this phase of laboratory work. The aim was to investigate how well the ongoing management of the postanalytical phase corresponds to the document “Post-analytical laboratory work: national recommendations” in Croatian medical biochemistry laboratories (MBLs).Materials and methodsAll 195 MBLs participating in the national external quality assessment scheme, were invited to undertake a part in a survey. Through 23 questions the participants were asked about management of the reference intervals (RI), delta check, reflex/reflective testing, postanalytical quality indicators and other parts of the postanalytical phase recommended in the national recommendations. The results are presented in numbers and percentages.ResultsOut of 195 MBLs, 119 participated in the survey, giving a response rate of 61%. Not all of the respondents provided answers to all the questions. Delta check has not been used in 59% (70/118) of the laboratories. Only 22/113 (20%) laboratories use reflex and/or reflective testing. In 53% of the laboratories, critical results were reported within 30 minutes of the confirmation of the results. In 34% (40/118) of the laboratories, turnaround time and reporting of critical results are two most often monitored postanalytical quality indicators.ConclusionThe results showed the critical results reporting and monitoring of postanalytical quality indicators are in the line with the recommendations. However, the management of RI verification, the use of delta check and reflex/reflective testing still must be harmonized among Croatian MBLs.  相似文献   

3.
IntroductionThe COVID-19 pandemic has posed several challenges to clinical laboratories across the globe. Amidst the outbreak, errors occurring in the preanalytical phase of sample collection, transport and processing, can further lead to undesirable clinical consequences. Thus, this study was designed with the following objectives: (i) to determine and compare the blood specimen rejection rate of a clinical laboratory and (ii) to characterise and compare the types of preanalytical errors between the pre-pandemic and the pandemic phases.Materials and methodsThis retrospective study was carried out in a trauma-care hospital, presently converted to COVID-19 care centre. Data was collected from (i) pre-pandemic phase: 1st October 2019 to 23rd March 2020 and (ii) pandemic phase: 24th March to 31st October 2020. Blood specimen rejection rate was calculated as the proportion of blood collection tubes with preanalytical errors out of the total number received, expressed as percentage.ResultsTotal of 107,716 blood specimens were screened of which 43,396 (40.3%) were received during the pandemic. The blood specimen rejection rate during the pandemic was significantly higher than the pre-pandemic phase (3.0% versus 1.1%; P < 0.001). Clotted samples were the commonest source of preanalytical errors in both phases. There was a significant increase in the improperly labelled samples (P < 0.001) and samples with insufficient volume (P < 0.001), whereas, a significant decline in samples with inadequate sample-anticoagulant ratio and haemolysed samples (P < 0.001).ConclusionIn the ongoing pandemic, preanalytical errors and resultant blood specimen rejection rate in the clinical laboratory have significantly increased due to changed logistics. The study highlights the need for corrective steps at various levels to reduce preanalytical errors in order to optimise patient care and resource utilisation.  相似文献   

4.
In the 70ies of the last century, ther term “preanalytical phase” was introduced in the literature. This term describes all actions and aspects of the “brain to brain circle” of the medical laboratory diagnostic procedure happening before the analytical phase. The author describes his personal experiences in the early seventies and the following history of increasing awareness of this phase as the main cause of “laboratory errors”. This includes the definitions of influence and interference factors as well as the first publications in book, internet, CD-Rom and recent App form over the past 40 years. In addition, a short summary of previous developments as prerequesits of laboratory diagnostic actions is described from the middle age matula for urine collection to the blood collection tubes, anticoagulants and centrifuges. The short review gives a personal view on the possible causes of missing awareness of preanalytical causes of error and future aspects of new techniques in regulation of requests to introduction of quality assurance programs for preanalytical factors.  相似文献   

5.
The evidence-based paradigm has changed and evolved medical practice. Phlebotomy, which dates back to the age of ancient Greece, has gained experience through the evolution of medicine becoming a fundamental diagnostic tool. Nowadays it connects the patient with the clinical laboratory dimension building up a bridge. However, more often there is a gap between laboratory and phlebotomist that causes misunderstandings and burdens on patient safety. Therefore, the scope of this review is delivering a view of modern phlebotomy to “bridge” patient and laboratory. In this regard the paper describes devices, tools and procedures in the light of the most recent scientific findings, also discussing their impact on both quality of blood testing and patient safety. It also addresses the issues concerning medical aspect of venipuncture, like the practical approach to the superficial veins anatomy, as well as the management of the patient’s compliance with the blood draw. Thereby, the clinical, technical and practical issues are treated with the same relevance throughout the entire paper.Key words: phlebotomy, venipuncture, laboratory testing, preanalytical phase, preanalytical variability, patient safety, evidence based medicine  相似文献   

6.
IntroductionThe interest in quality management tools/methodologies is gradually increasing to ensure quality and accurate results in line with international standards in clinical laboratories. Six Sigma stands apart from other methodologies with its total quality management system approach. However, the lack of standardization in tolerance limits restricts the advantages for the process. Our study aimed both to evaluate the applicability of analytical quality goals with Roche Cobas c 702 analyser and to determine achievable goals specific to the analyser used.Materials and methodsThe study examined under two main headings as Sigmalaboratory and Sigmaanalyser. Sigmalaboratory was calculated using internal and external quality control data by using Roche Cobas c 702 analyser for 21 routine biochemistry parameters and, Sigmaanalyser calculation was based on the manufacturer data presented in the package inserts of the reagents used in our laboratory during the study. Sigma values were calculated with the six sigma formula.ResultsConsidering the total number of targets achieved, Sigmaanalyser performed best by meeting all CLIA goals, while Sigmalaboratory showed the lowest performance relative to biological variation (BV) desirable goals.ConclusionsThe balance between the applicability and analytical assurance of “goal-setting models” should be well established. Even if the package insert data provided by the manufacturer were used in our study, it was observed that almost a quarter of the evaluated analytes failed to achieve even “acceptable” level performance according to BV-based goals. Therefore, “state-of-the-art” goals for the Six Sigma methodology are considered to be more reasonable, achievable, and compatible with today’s technologies.  相似文献   

7.
8.
Preanalytical phase is the most vulnerable part of the total testing process and is considered to be among the greatest challenges to the laboratory professionals. However, preanalytical activities, management of unsuitable specimens and reporting policies are not fully standardized, nor harmonized worldwide. Several standards related to blood sampling and sample transportation and handling are available, but compliance to those guidelines is low, especially outside the laboratory and if blood sampling is done without the direct supervision of the laboratory staff. Furthermore, for some most critical procedures within the preanalytical phase, internationally accepted guidelines and recommendations as well as related quality measures are unfortunately unavailable. There is large heterogeneity in the criteria for sample rejection, the different strategies by which unacceptable samples are managed, processed and test results reported worldwide. Management of unacceptable specimens warrants therefore immediate harmonization. Alongside the challenging and long road of patient safety, preanalytical phase offers room for improvement, and Editors at Biochemia Medica Journal definitely hope to continue providing a respective mean for reporting studies on different preanalytical phase topics. With pleasure and delight we invite potential future authors to submit their articles examining the quality of various preanalytical activities to Biochemia Medica. We will keep nurturing this topic as our prominent feature and by this we hope to be able to deliver valid evidence for some future guidelines and recommendations.  相似文献   

9.

Background

Failure to follow-up laboratory test results has been described as one of the major processes contributing to unsafe patient care. Currently, most of the laboratories do not know with certainty not only their rate of missed (or unreviewed) requests but the economical cost and impact that this issue implies. The aim of our study was to measure that rate and calculate the resulting costs.

Material and methods

In January 2015, we checked in our Laboratory Information Management System (LIMS) for every emergency request from 1st July 2011 to 30th June 2014, if they had been reviewed by any allowed user or not. 319,064 requests were ordered during that period of time. Results were expressed as “ordered requests”, “missed requests” and its percentage. Additionally, total cost of missed requests was calculated in euros (€). “Non-productive days” were theorised (as the days producing requests that were not reviewed) based on these results.

Results

7924 requests (2.5%) were never reviewed by clinicians. This represented a total cost of 203,039 € and 27 “non-productive” days in three years. Significant differences between inpatients, outpatients and emergency department as well as different emergencies units were found after application of statistical analysis.

Conclusions

In terms of resources, never reviewed or missed requests appear to be a not negligible problem for the clinical laboratory management. Electronic result delivery, with electronic endorsement to indicate follow-up of requests along with better systems of electronic requesting should be investigated as a way of improving patient outcomes and save unnecessary expenses.Key words: quality indicators, health care, extra-analytical phase, total quality management, clinical laboratory information systems  相似文献   

10.
IntroductionAn appropriate management of anaemia laboratory tests is crucial for a correct diagnosis and treatment. A non-sequential “shotgun” approach (where every anaemia related test is ordered) causes workload and cost increases and could be potentially harmful. We have implemented a Decision Support System through our laboratory information system (LIMS) based on reflexive algorithms and automatic generation of interpretative reports specifically in diagnosis of anaemia for primary care patients.Materials and methodsWhen a request contained an “Anaemia Suspicion Study” profile, more than twenty automatic reflexive rules were activated in our LIMS based upon laboratory results. These rules normally involved the addition of reflexive tests. A final report was automatically generated for each interpretation which was always reviewed for their validity by two staff pathologists. We measured the impact of this system in the ordering of most common anaemia related tests and if a proper treatment was established based on the interpretive report.ResultsFrom all the studies performed, only 12% were positive being “iron deficiency” and “anaemia of chronic disease” the most frequent causes, 62% and 17%, respectively. Proper treatment was established in 88% of these anaemic patients. Total iron, transferrin, ferritin, folate and vitamin B12 demand decreased substantially after implementation representing a cost reduction of 40% only for these five tests.ConclusionsOur system has easily improved patient outcomes, advising on individual clinical cases. We have also noticeably reduced the number of over-requested tests and laboratory costs.  相似文献   

11.

Background

The preanalytical phase represents the major source of variability in laboratory diagnostics. Our aim was to assess to what extent underfilling of primary blood tubes may impact upon routine coagulation testing.

Materials and methods:

Blood was drawn by syringe from 21 healthy volunteers and 6 patients on warfarin therapy, and immediately transferred into 3.6 mL vacuum tubes containing 3.2% sodium citrate (Terumo Europe N.V., Leuven, Belgium). All tubes were filled using standardized volumes of whole blood to produce scalar amounts of filling: 3.6 mL (i.e., 100%), 3.2 mL (89%), 2.8 mL (78%) and 2.4 mL (67%). Samples were mixed and centrifuged at 1300 × g for 10 min. The plasma was tested for prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen (FBG) on ACL TOP (Instrumentation Laboratory - IL, Milan, Italy), using IL reagents. A polynomial plot was derived for each parameter from interpolation of clotting values obtained with different percentages of filling, and these plots were compared with quality specifications (± 2.0 for PT, ± 2.3 for APTT and ± 4.8 for FBG) to calculate the minimal filling volume required to produce clinically acceptable results.

Results:

The equations were (PF, Percentage of filling): PT (sec) = 3.375 × PF^2–6.255 × PF + 17.806 (r = 0.980); APTT (sec) = 8.925 × PF^2–23.578 × PF + 46.356 (r = 0.979); and FBG (mg/dL) = −311.5 × PF^2 + 422.1 × PF + 147.07 (r = 0.994). According to these equations, the minimum allowed thresholds of blood tubes filling were > 61% for PT, > 87% for APTT and > 71% for FBG.

Conclusions:

Our results confirm that routine coagulation testing performed on underfilled tubes may generate biased and clinically misleading test results. This is particularly critical for APTT, wherein tubes filled at less than ∼90% generate unreliable data. The FBG and the PT seem more resistant to underfilling, clinical significant biases being observed only where blood tubes were filled at less than ∼60 and ∼70%, respectively.  相似文献   

12.
Preanalytical steps are the major sources of error in clinical laboratory. The analytical errors can be corrected by quality control procedures but there is a need for stringent quality checks in preanalytical area as these processes are done outside the laboratory. Sigma value depicts the performance of laboratory and its quality measures. Hence in the present study six sigma and Pareto principle was applied to preanalytical quality indicators to evaluate the clinical biochemistry laboratory performance. This observational study was carried out for a period of 1 year from November 2015–2016. A total of 1,44,208 samples and 54,265 test requisition forms were screened for preanalytical errors like missing patient information, sample collection details in forms and hemolysed, lipemic, inappropriate, insufficient samples and total number of errors were calculated and converted into defects per million and sigma scale. Pareto`s chart was drawn using total number of errors and cumulative percentage. In 75% test requisition forms diagnosis was not mentioned and sigma value of 0.9 was obtained and for other errors like sample receiving time, stat and type of sample sigma values were 2.9, 2.6, and 2.8 respectively. For insufficient sample and improper ratio of blood to anticoagulant sigma value was 4.3. Pareto`s chart depicts out of 80% of errors in requisition forms, 20% is contributed by missing information like diagnosis. The development of quality indicators, application of six sigma and Pareto`s principle are quality measures by which not only preanalytical, the total testing process can be improved.  相似文献   

13.
Quality indicators (QIs) measure the extent to which set targets are attained and provide a quantitative basis for achieving improvement in care and, in particular, laboratory services. A body of evidence collected in recent years has demonstrated that most errors fall outside the analytical phase, while the pre- and post-analytical steps have been found to be more vulnerable to the risk of error. However, the current lack of attention to extra-laboratory factors and related QIs prevent clinical laboratories from effectively improving total quality and reducing errors. Errors in the pre-analytical phase, which account for 50% to 75% of all laboratory errors, have long been included in the ‘identification and sample problems’ category. However, according to the International Standard for medical laboratory accreditation and a patient-centered view, some additional QIs are needed. In particular, there is a need to measure the appropriateness of all test request and request forms, as well as the quality of sample transportation. The QIs model developed by a working group of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) is a valuable starting point for promoting the harmonization of available QIs, but further efforts should be made to achieve a consensus on the road map for harmonization.  相似文献   

14.
IntroductionEpithelial cells (ECs) are structures regularly observed during urine microscopy analysis. The correct identification of EC subtypes can be useful since renal tubular epithelial cells (RTECs) are clinically relevant. We investigate the urinary ECs report and the judgement of its clinical importance by Brazilian laboratories.Materials and methodsA survey with four questions was made available to participants of the Urinalysis External Quality Assessment Program (EQAP) from Controllab. Laboratories composed 3 groups: (1) differentiating ECs subtypes: “squamous”, “transitional” and “RTECs”; (2) differentiating ECs subtypes: “squamous” or “non-squamous” cells; (3) without ECs subtype identification. Participants did not necessarily answer to all questions and the answers were evaluated both within the same laboratory’s category and within different categories of laboratories.ResultsA total of 1336 (94%) laboratories answered the survey; Group 1, 119/140 (85%) reported that ECs differentiation is important to the physician and 62% want to be evaluated by EQAP, while in Group 3, 455/1110 (41%) reported it is useful to them, however only 25% want be evaluated by EQAP. Group 2 laboratories 37/51 (73%) reported that the information is important, but only 13/52 (25%) are interested in an EQAP with differentiation of the 3 ECs subtypes.ConclusionMost of the laboratories do not differentiate ECs in the three subtypes, despite the clinical importance of RTECs. Education of laboratory staff about the clinical significance of urinary particles should be considered a key priority.  相似文献   

15.

Introduction

The educational program for health care personnel is important for reducing preanalytical errors and improving quality of laboratory test results. The aim of our study was to assess the level of knowledge on preanalytical phase in population of biomedicine students through a cross-sectional survey.

Materials and methods

A survey was sent to students on penultimate and final year of Faculty of Pharmacy and Biochemistry – study of medical biochemistry (FPB), Faculty of Veterinary Medicine (FVM) and School of Medicine (SM), University of Zagreb, Croatia, using the web tool SurveyMonkey. Survey was composed of demographics and 14 statements regarding the preanalytical phase of laboratory testing. Comparison of frequencies and proportions of correct answers was done with Fisher’s exact test and test of comparison of proportions, respectively.

Results

Study included 135 participants, median age 24 (23-40) years. Students from FPB had higher proportion of correct answers (86%) compared to students from other biomedical faculties 62%, P < 0.001. Students from FPB were more conscious of the importance of specimen mixing (P = 0.027), prevalence of preanalytical errors (P = 0.001), impact of hemolysis (P = 0.032) and lipemia interferences (P = 0.010), proper choice of anticoagulants (P = 0.001), transport conditions for ammonia sample (P < 0.001) and order of draw during blood specimen collection (P < 0.001), in comparison with students from SM and FVM.

Conclusions

Students from FPB are more conscious of the importance of preanalytical phase of testing in comparison with their colleagues from other biomedical faculties. No difference in knowledge between penultimate and final year of the same faculty was found.Key words: survey, education, preanalytical phase  相似文献   

16.
IntroductionAutoverification (AV) is a postanalytical tool that uses algorithms to validate test results according to specified criteria. The Clinical and Laboratory Standard Institute (CLSI) document for AV of clinical laboratory test result (AUTO-10A) includes recommendations for laboratories needing guidance on implementation of AV algorithms. The aim was to design and validate the AV algorithm for biochemical tests.Materials and methodsCriteria were defined according to AUTO-10A. Three different approaches for algorithm were used as result limit checks, which are reference range, reference range ± total allowable error, and 2nd and 98th percentile values. To validate the algorithm, 720 cases in middleware were tested. For actual cases, 3,188,095 results and 194,520 reports in laboratory information system (LIS) were evaluated using the AV system. Cohen’s kappa (κ) was calculated to determine the degree of agreement between seven independent reviewers and the AV system.ResultsThe AV passing rate was found between 77% and 85%. The highest rates of AV were in alanine transaminase (ALT), direct bilirubin (DBIL), and magnesium (Mg), which all had AV rates exceeding 85%. The most common reason for non-validated results was the result limit check (41%). A total of 328 reports evaluated by reviewers were compared to AV system. The statistical analysis resulted in a κ value between 0.39 and 0.63 (P < 0.001) and an agreement rate between 79% and 88%.ConclusionsOur improved model can help laboratories design, build, and validate AV systems and be used as starting point for different test groups.  相似文献   

17.
Errors in laboratory medicine occur in the preanalytical, analytical, and postanalytical phases. The errors are mostly detected in the preanalytical period. However, analytical errors are still an important source of error, despite their frequency is reduced significantly in years thanks to developments in laboratories. In this case, an analytical error was noticed during the verification of a patient’s results. The direct bilirubin of a 66-year-old male patient admitted to the emergency department was higher than the total bilirubin. The patient’s symptoms were fatigue and dyspnoea. Albumin and haemoglobin (Hb) concentrations of the patient were significantly low. After considering the patient’s demographics and laboratory results, the laboratory specialist suspected a paraproteinemia interference. Total protein was performed as a reflective test. The albumin/globulin ratio was reversed. Thereafter, serum protein electrophoresis (SPEP) and immunofixation electrophoresis (IFE) were performed as another reflective tests, respectively. SPEP and IFE results were in favour of monoclonal gammopathy. The patient was directed to a haematologist, underwent a bone marrow biopsy, and the result was reported as Waldenstrom’s macroglobulinemia with plasma cell differentiation expressing IgM-Kappa. The patient went on a chemotherapy protocol, and his condition has been improved in subsequent months. Detection of analytical errors is of great importance, like in our case, and may be used as a tool to identify patients who have not yet been diagnosed. The laboratory specialist must dominate the entire process of each test in the laboratory, be aware of the limitations of tests, and turn these disadvantages into advantages when necessary.  相似文献   

18.
At the down of the third millennium, it is rather misleading to consider the “whole population” as a conceptual entity, whereby the population is actually composed by single individuals, who differ broadly in terms of age, sex, ethnic origin, occupation, health, wellbeing, lifestyle and risk factors. While reaffirming strongly that laboratory medicine shall aim to provide data that could be translated into actionable information on “BOTH” an individual and universal level, we confute and refuse the naive and too simplistic approach that the common beneficence shall always be prioritized over the individual good, since the common good is just the sum of many individual beneficences.  相似文献   

19.

Introduction

Hemolysis can occur during sample collection, handling and transport. It is more frequent when the non-laboratory staff performs sampling. The aim of this study was to assess nurses’ knowledge on the causes of hemolysis and consequential impact on the laboratory tests results. Additionally, the differences in knowledge, related to work experience, professional degree and previous education about hemolysis were explored.

Materials and methods

An anonymus survey, containing 11 questions on demographics, causes of hemolysis, its impact on biochemical parameters and nurses’ attitude towards additional education in preanalytics, was conducted in four Croatian hospitals. The answers were compared by Chi-squared and Fischer exact test.

Results

In total, 562 survey results were collected. Majority of nurses declared familiarity with the term “hemolysis” (99.6%). There were 77% of correct answers regarding questions about the causes of hemolysis, but only 50% when it comes to questions about interference in biochemical tests. The percentage of correct answers about causes was significantly lower (P = 0.029) among more experienced nurses, and higher (P = 0.027) in those with higher professional degree, while influence of previous education was not significant. Also, higher percentage of correct answers about interferences was encountered in nurses with longer work experience (P = 0.039). More than 70% of nurses declared that additional education about preanalytical factors would be beneficial.

Conclusion

Croatian nurses are familiar with the definition of hemolysis, but a lack of knowledge about causes and influence on laboratory test results is evident. Nurses are eager to improve their knowledge in this field of preanalytical phase.Key words: hemolysis, nurses, survey, preanalytical phase  相似文献   

20.

Introduction

Preanalytical control and monitoring continue to be an important issue for clinical laboratory professionals. The aim of the study was to evaluate a monitoring system of preanalytical errors regarding not suitable samples for analysis, based on different indicators; to compare such indicators in different phlebotomy centres; and finally to evaluate a single synthetic preanalytical indicator that may be included in the balanced scorecard management system (BSC).

Materials and methods

We collected individual and global preanalytical errors in haematology, coagulation, chemistry, and urine samples analysis. We also analyzed a synthetic indicator that represents the sum of all types of preanalytical errors, expressed in a sigma level. We studied the evolution of those indicators over time and compared indicator results by way of the comparison of proportions and Chi-square.

Results

There was a decrease in the number of errors along the years (P < 0.001). This pattern was confirmed in primary care patients, inpatients and outpatients. In blood samples, fewer errors occurred in outpatients, followed by inpatients.

Conclusion

We present a practical and effective methodology to monitor unsuitable sample preanalytical errors. The synthetic indicator results summarize overall preanalytical sample errors, and can be used as part of BSC management system.Key words: Preanalytical phase, errors in laboratory medicine, balanced scorecard, patient safety  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号