首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
本文介绍椭圆和双曲线切线的一个有趣性质 ,并说明其应用 .定理 经过椭圆 b2 x2 a2 y2 =a2 b2 (a>b>0 )或双曲线 b2 x2 - a2 y2 =a2 b2 (a>0 ,b>0 )的长轴或实轴两端点 A1 和 A2 的切线 ,与椭圆或双曲线上任一点的切线相交于 P1 和P2 ,则 |P1 A1 |· |P2 A2 |=b2 .证明 椭圆上任一点 P(acosθ,bsinθ)处的切线方程为 b2 ·acosθ· x a2 · bsinθ·y=a2 b2 即bcosθ·x asinθ·y- ab=0 .1又知点 A1 (- a,0 )和 A2 (a,0 )处的切线方程分别为 x=- a和 x=a,将它们分别与1联立解得 |P1 A1 |=|y P1|=b|1 cosθsinθ |,|P2 A2 |=|y P…  相似文献   

2.
性质1设F为椭圆的一个焦点,其相应的准线为l,过椭圆上的一点M的切线交准线l于P,则PF⊥MF.证明过椭圆22ax2+by2=1(a>b>0)上点M(a cosθ,bsinθ)的切线为:x cos ysin1aθ+bθ=,则(2,(cos))sinPa b c ac cθθ?.∴sin,MFcoskba cθ=θ?k FP=c?b saicnoθsθ,∴k MF?kFP=?1,∴PF⊥MF.性质1'设F为抛物线y2=2px(p>0)的焦点,过抛物线上任一点(非顶点(0,0)M的切线交准线l于P,则PF⊥MF.证明设抛物线上一点M(t2/(2p),t)(非顶点(0,0)),则过M的切线为:2()2ty p xt=+p,∴22(,)22Pp t pt??,∴22222,MF FP2k pt kt pt p pt=?=??,∴k MF?kFP…  相似文献   

3.
错在哪里     
1 云南曲靖一中 李耀先 张国坤 (邮编 :6550 0 0 )题 已知两个复数集合A ={z|z =cosθ +( 4 -m2 )i,m∈R ,θ∈R},B ={z|z =m +(λ +sinθ)i,m∈R ,θ∈R},若A∩B≠ ,求实数λ的取值范围。解 由于A∩B≠ ,故存在m、θ∈R ,使得cosθ+( 4 -m2 )i=m +(λ +sinθ)i,故 cosθ=m ,4-m2 =λ +sinθ, λ =4-cos2 θ-sinθ=sin2 θ -sinθ +3 =(sinθ -12 ) 2 +1 14,因为 -1≤sinθ≤ 1 ,所以当sinθ=12 时 ,λmin=1 14;当sinθ =-1时 ,λmax=5。故λ的取值范围是 [1 14,5 ]。解法错了 !错在哪里 ?错在没有注意到两个集合的交集非空…  相似文献   

4.
椭圆是一个完美的几何图形 ,笔者在最近的教学研究中 ,得到了三个与之有关的有趣的轨迹 ,现整理如下 ,供同行人士参考 .     图 1定理 1  (焦点三角形重心轨迹 )设A是椭圆b2 x2 +a2 y2 =a2 b2   (a>b >0 )上一点 ,F1(-c ,0 )、F2 (c ,0 )分别是左、右焦点 ,则△AF1F2 的重心轨迹是椭圆 x2(a/ 3) 2 + y2(b/ 3) 2=1,其离心率与原椭圆离心率相等 .证明 设点G(x ,y)是△AF1F2 重心 ,如图 1.因为点A在椭圆上 ,则A(acosθ ,bsinθ) .由三角形重心坐标公式x=-c+c+acosθ3=acosθ3,y =0 + 0 +bsinθ3=bsinθ3,消去θ整理得  x2(a/ 3) …  相似文献   

5.
孙爱玲 《天中学刊》2002,17(5):106-106
构造点的坐标 ,应用平面解析几何的公式或原理解题 ,是一个常用的解题的方法 .下面从几个方面加以说明 .1 应有两点间的距离公式求解例 1 已知在实数 m,n,a,b和角 θ之间成立关系式m sinθ- n cosθ=m2 +n2 ,(1)sin2 θa2 +cos2 θb2 =1m2 +n2 , (2 )求证 :m2a2 +n2b2 .证 :在平面上取两点 A (m ,- n) ,B (m2 +n2 sinθ,m 2 +n2 cosθ)均满足 (1) ,(2 ) ,于是 A,B两点间的距离为  |AB|=m2 +n2 sinθ- m 2 +m2 +n2 cosθ+n 2=2 (m2 +n2 ) - 2 m2 +n2 (m sinθ- n cosθ) 2=0 .则 A,B两点重合 ,从而m2 +n2 sinθ=m,m2 +n2 cosθ=- n,代…  相似文献   

6.
有这样一道习题: 设a sin bθ cos=c acscθ b secθ=c, 求证: sin2θ=(2ab)/(c~2-a~2-b~2). 这是一个流行很广的错题。下面我们做些探讨。 有关资料,给出了如下答案(记为方法一)。 由已知a cscθ b secθ=c,得a cosθ b sinθ=c.sinθcosθ,又∵a sinθ b cosθ=c,∴(a sinθ b cosθ)(a cosθ b sinθ)=c~2sinθcosθ, 整理后可得sin2θ=2sinθcosθ=(2ab)/(c~2-a~2-b~2) 这种证法用到了三角变换、三角恒等式、二倍角公式,并且中间没有不严密之处,所以解答是正确的、完  相似文献   

7.
变量代换是解数学题的一种重要策略 ,其中三角代换更是有着广泛而灵活的应用。它能使问题得到巧妙的转化 ,起到化繁为简、化难为易的作用。若运用得法 ,往往能收到事半功倍的效果。1 求最值例 1 已知 x21 6+y29=1 ,求u =x2 +2xy +y2 的最值 ,及相应的x ,y的值。解 据已知 ,可令x =4cosθ,y =3sinθ(θ∈R) ,则u =1 6cos2 θ +2 4sinθcosθ+9sin2 θ=72 cos2θ+1 2sin2θ +2 52 =2 52 sin( 2θ +φ) +2 52 ,其中cosφ =2 42 5 ,sinφ =72 5 ,且 0 <φ <π2 。由此可得 ,cos φ2 =721 0 ,sin φ2 =21 0 。当sin( 2θ +φ) =1时 ,取 2θ+…  相似文献   

8.
gxueshengshidai一.选择题1.过定点P(0,2)作直线l,使l与曲线y2=4(x-1)有且仅有1个公共点,这样的直线l共有()A.1条B.2条C.3条D.4条2.设θ是三角形的一个内角,且sinθ cosθ=15,则曲线x2sinθ y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线3.已知F1、F2是椭圆1x62 y92=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1| |BF1|等于()A.11B.10C.9D.164.AB为过椭圆x2a2 by22=1中心的弦,F(c,0)为椭圆的右焦点,则△AFB的面积最大值是()A.b2B.ab C.ac D.bc5.椭圆x…  相似文献   

9.
我们把椭圆x2/a2+y2/b2=1的参数方程{x=acosθ y=bsinθ意一点P(acosθ,bsinθ)的离心角.本文介绍与椭圆的离心角相关的两个有趣性质供读者参考. 性质1 椭圆(或圆)x2/a2+y2/b2=1(a>0,b>0)的两条相交弦AB,CD的四个端点共圆的充要条件是这四个端点的离心角之和为周角的整数倍.  相似文献   

10.
题目 设 0≤θ≤π ,直线l:xcosθ +ysinθ=2和椭圆x26+y22 =1有公共点 .求 :θ的取值范围 .解法一 :(判别式法 )①cosθ=0时 ,直线l的方程为 :y =2 ,此时直线和椭圆相离 .②cosθ≠ 0时 ,直线l的方程为 :x=-ytanθ+2secθ 代入椭圆方程 :x2 +3y2 -6=0 可得 :( 3 +tan2 θ)y2 -4secθtanθ·y+4tan2 θ-2 =0由Δ =16sec2 θ·tan2 θ -4 ( 3 +tan2 θ) ( 4tan2 θ -2 ) ≥ 0 ,解得tan2 θ≤ 1,又∵ 0 ≤θ≤π ,∴θ∈ 0 ,π4∪ 3π4,π .评注 :判别式法是处理直线和圆锥曲线位置关系最常规的方法 ,思想方法较简单 ,但有时运算较复杂 .解…  相似文献   

11.
文 [1]中的例 1是 :若 sin4θa + cos4θb =1a+ b(a,b为正数 ) .求证 :sin8θa3 + cos8θb3 =1(a+ b) 3 .该例是文 [2 ]例 4的特例 :设 sin4xa + cos4xb =1a+ b,a>0 ,b>0 .证明 :对任何正整数 n都有 sin2 nxan-1 + cos2 nxbn-1 =1(a+ b) n-1 .文 [2 ]用了丢番图恒等式来证明 ,并认为若用三角式的恒等变形 ,则过程复杂 ,运算冗繁 .实际上 ,如果发现了条件与结论中的某种对称性 ,用数形结合的思想和方法来思考 ,揭示这个三角恒等式的几何背景 ,简便易行 ,过程简明 ,体现了数学的和谐美与简洁之美 .设椭圆 (或圆 )的方程为(a+ b)· X2b + (a+ …  相似文献   

12.
本文例谈应用方程根的定义解题,方法新颖,简捷明快. 例1 已知a、b是关于z的方程 z2 sinθ z cosθ-1=0 的两个不等实根,求证:无论θ为何值,在坐标平面上过点A(a,a2)、B(b,b2)的直线恒切于一定圆.  相似文献   

13.
题目给定曲线族()22sinθ?cosθ 3x2?(8sinθ cosθ 1)y=0,θ为参数,求该曲线族在直线y=2x上所截得的弦长的最大值.(1995年全国高中数学联赛第2试试题)解曲线族与直线y=2x相交于原点O(0,0)和另一交点为()P x0,y0,显然x0≠0,并且x0,y0满足方程()()2228y0?4x0sinθ y0 2x0cosθ=6x0?y0,构造向量()22a=8y0?4x0,y0 2x0,b=(sinθ,cosθ),由?a b≤a?b≤a b,即a?b2≤a2b2(当且仅当a,b共线时取等号),得[(8y0?4x02)?sinθ (y0 2x02)?cosθ]222222222≤[(8y0?4x0) (y0 2x0)](sinθ cosθ),即(6x02?y0)2≤(8y0?4x02)2 (y0 2x02)2(*),把y0=2x0代入(*)并…  相似文献   

14.
本文着重讨论:当θ∈[θ_1,θ_2],且0<θ_2-θ_1<2π,特别是ψ为非特殊值时,f(θ)=a cosθ b sinθ值域的求法及其一般规律。解题的途径是利用a cosθ b sinθ=(a~2 b~2)~(1/2)sin(θ ψ)。  相似文献   

15.
椭圆两弦端点处切线的两个有趣性质   总被引:1,自引:0,他引:1  
文[1]给出了椭圆焦点弦的一个优美结论,受其启发并结合文[2],笔者将两焦点替换为两对称点进行探究,发现椭圆两条弦端点处的切线存在着如下两个十分有趣的性质.图1定理1如图1,设P是椭圆x2a2 y2b2=1上任一点,弦P P1,P P2(或其延长线)分别过点M1(-m,0),M2(m,0)(m≠a),P1,P2处的切线交于点P,′则xP xP′=0.证明设P(acos,θbsinθ),P1(a·cos1φ,bsin1φ),P2(acos2φ,bsin2φ),则点P1,P2处的切线分别为bcos1φ·x asin1φ·y=ab,bcos2φ·x asin2φ·y=ab.两切线的交点P′的横坐标xP′=a(sin2φ-sin1φ)sin(2φ-1φ)=acos2φ 1φ2cos2φ-…  相似文献   

16.
在平面解析几何中,有关圆锥曲线方程的一些应用题,解法是比较复杂的,为了避开繁琐的运算,可应用参数方程解题,把代数运算转化为三角运算。例1.设TT′是椭圆的任一切线介于长轴两端切线AT、A′T′间的线段,则以TT′为直径的圆必过焦点F、F′。证:设椭圆在直角坐标系中的参数方程为x=acosθ y=bsinθ,过椭圆上任一点(acosθ,bsinθ)的切线方程为xcosθ/a+ysinθ/b=1; 因为长轴两端的切线方程为x~2-a~2=0  相似文献   

17.
极限是进一步学习高等数学的重要工具 ,极限思想是从有限认识无限、从已知认识未知、从近似认识精确的一种数学方法 ,某些中学数学问题 ,运用极限思想具有它独特的方法 .下面我们利用极限思想解几个问题 .1 利用极限思想解三角问题例 1 对任何 θ∈ (0 ,π2 )都有 (  )(A) sin sinθcosθ>cos cosθ(C) sin cosθ相似文献   

18.
《中等数学》2007,(10):49-49,F0004
7复数 7.1复数的三种表示法 (1)代数形式:z=a+b i(a、b∈R). (2)三角形式:z=r(cos θ+i sin θ)(r≥0,θ∈R). (3)指数形式:z=rei θ(r≥0,θ∈R).  相似文献   

19.
有些三角问题 ,若根据已知式的结构 ,挖掘出它的几何背景 ,巧妙地构造单位圆 ,化数为形 ,利用单位圆的直观性 ,便可简捷地求得问题的解 .例 1 已知sinA +sin 3A+sin 5A =a ,cosA +cos 3A +cos 5A =b ,求证 :当b≠ 0时 ,tan 3A =ab.证明 如图 1,因点A′(cosA ,sinA)、B′(cos 3A ,sin 3A)、C′(cos 5A ,sin 5A)均在单位圆上 ,连结OA′、OB′、OC′ ,则有∠A′OB′ =∠B′OC′=2A ,于是|B′A′| =|B′C′| , A′B′C′为等腰三角形 ,其重心必在B′O上 .又 A′B′C′的重心坐标x =13 (cosA +cos 3A +cos 5A) =13 b ,y…  相似文献   

20.
定理椭圆ax22 yb22=1上任意一点P,A为椭圆的右顶点,∠AOP=θ,设OP=r,则1r2=coas22θ sibn22θ.证明:设点P的坐标为(x,y),则x=rcosθ,y=rsinθ.代入椭圆方程得:(rcoas2θ)2 (rsibn2θ)2=1.所以r12=coas22θ sibn22θ.推论1椭圆xa22 yb22=1,经过原点且互相垂直的两射线与椭圆交于两点P、M,设OP=r1,OM=r2,则r112 r122=a12 b12.证明:设A为椭圆的右顶点,∠AOP=θ,∠AOM=β,由引理得:r112=coas22θ sibn22θ,1r22=coas22β sibn22β.因为OP⊥OM,所以cos2θ=sin2β,sin2θ=cos2β.所以r121 r122=a12 b12.类似可以证明.推论2双曲线xa22-by…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号