首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《发明与创新》2005,(10):25-25
一个美国科研小组15日报告说,他们制造出世界第一个纳米阀门。这个阀门可以控制分子的进出,科学家设想将来用它向细胞内输送单个药物分子。加州大学洛杉矶分校教授杰弗里·青克等人研制的这个纳米阀门由两部分组成。一个是人工设计的轮烷分子,是阀门的活动开关“芯”;另一部分是500纳米见方的多孔硅物质,是阀门的固定部分,其小孔尺寸内有几个纳米。轮烷是人工设计的旋轮状物质,近年来在纳米技术研究中获得广泛重视。加州大学洛杉矶分校研究人员设计的这种开关轮烷,包括一个哑铃状的长链和一个能在“哑铃”两头之间来回直线移动的分子环,分子…  相似文献   

2.
据报道,美国科学家研制成了世界上第一辆“纳米车辆”。科学家说,未来这种车辆可用来运输单个的分子,成为“纳米生产”中的有用工具。莱斯大学教授詹姆斯·托尔等人耗费8年时间制作的这种“纳米车辆”不过3~4纳米见方,不到头发丝直径的2万分之一,却拥有完整的底盘、轮轴和车轮。它的轮轴能像汽车的轮轴一样平滑旋转,而轮轴末端是4个“巴基球”做成的轮子。“巴基球”是由60个碳原子构成的纳米级球状分子,具有很多新奇的特性,在纳米技术研究中很受科学家重视。托尔等人说,当这种“纳米车辆”放置在金片表面时,受热就会运动。研究人员先用强…  相似文献   

3.
《新科学家》杂志报道,美国和意大利的科学家小组成功地研制成一台复杂的有点类似升降机的分子机器,其大小只有2.5×3.5纳米。 纳米"升降机"由两个有机分子组成,其中一个分子起平台作用,另一个分子起升降机井作用。同时作为平台的分子与用作支架的3个富含氧的圆环连接。升降  相似文献   

4.
海外新知     
6月13日出版的英国《自然》杂志的两篇论文讨论了将分子用作纳米尺度的装置中的电子元件的可能性。两项研究都在晶体管结构中采用了含有过渡原子的专门设计的分子。其中一项研究采用一个钴原子,另一项研究采用一对钒原子。目前,电子设备的基本单元是半导体晶体管,未来体积更小、能力更强的纳米电子  相似文献   

5.
《中国科学院院刊》2007,22(5):415-415
发展高活性、高手性选择性、高稳定性的固体手性催化剂是手性催化领域的一个主攻研究方向。大连化物所催化基础国家重点实验室杨恒权、杨启华、李灿等,通过特殊的纳米反应器封口技术将均相手性催化剂限阈在笼形纳米反应器中,同时允许反应物和产物分子在纳米反应器中自由进出。结果发现,在纳米反应器中组装2个以上手性催化剂分子时,手性催化反应的活性大幅度提高,甚至远远超过均相催化反应结果。  相似文献   

6.
生活中处处皆有美,即使是在微小的纳米世界中,也有千姿百态的花朵,也有绚丽多彩的颜色。利用纳米技术,科学家制造出了纳米花朵,纳米洞、纳米管,甚至还可以利用纳米技术书写出最小的字母和文字。这些美丽的纳米图片是通过扫描电子显微镜拍摄的,在拍摄时加入了适当的色彩。制造纳米材料,需要精细的技巧。比如要得到纳米花朵,首先要有一枚种子微粒,然后把种子微粒放入充满“营养”的混合物中,就像我们把种子埋在地里一样。而纳米花朵周围的营养物质,其实是不同的气体混合物,种子微粒与气体分子发生反应,气体分子凝聚在种子周围,于是纳米种子逐…  相似文献   

7.
《大众科技》2008,(1):6-6
复旦大学科学家在纳米马达研究中获重要进展。以王志松教授为负责人的复旦大学现代物理研究所分子纳米研究组发现了纳米马达自主运动的分子机制,为发展一大类性能先进的新型纳米马达打开了通路。近日,相关研究成果发表在《美国国家科学院院刊》上。  相似文献   

8.
《中国科学院院刊》2010,25(2):219-225
<正>发现源于纳米天线效应的新电光现象中国科技大学合肥微尺度物质科学国家实验室单分子物理化学研究团队的研究发现,当无线电通信天线尖端尺寸减少到纳米量级,并非常接近另一金属表面而形成一个纳米腔室时,就可以利用局域等离激元共振模式的调控来对腔内荧光体的发光特性进行有效控  相似文献   

9.
如果说20世纪微电子技术是科技的至高点的话,那么在21世纪纳米无疑是最亮丽的新星。什么是纳米技术纳米是一个非常小的长度单位,纳米技术就是跟这个非常非常小的尺度和微观世界打交道的一种科学技术。它所涉及的最小尺寸,严格地讲就是单元的尺寸,一般是在1~100纳米这么一个数量级。美国人在国家纳米技术启动计划中,讲到纳米技术的精髓就是从原子分子的精确操纵出发构建具有全新分子排列形式的人造结构。换句话说纳米技术希望能够从一个一个原子,一个一个分子的操纵,摆弄一个原子、一个分子,并用这种办法来做成一些材料、做…  相似文献   

10.
纳米技术是指在0.1~100 nm的尺度空间内研究电子、原子、分子的内在运行规律和特性的崭新技术,采用了这种技术可以按照人的意愿来操纵原子、分子,或者原子团、分子团,制造出具有特定功能的微型材料和设备,将加工处理技术提高到前所未有的水平。纳米是一个非常小的单位,1纳米等于1米的十  相似文献   

11.
基于电化学方法的国家杰出青年科学基金项目(电分析化学),研究了单颗粒表面的光电化学反应、界面电子传递和纳米孔道的单分子检测。本研究利用对一维界面单纳米粒子表面化学反应的监测,实现了细胞内单纳米粒子的电化学分析;然后通过自主装技术构建了可控二维膜界面,通过光电化学手段模拟并研究了生命活动电子传递过程;发展三维纳米孔道与界面膜系统,利用纳米孔道电化学检测技术研究了单分子水平上核酸适配体、多肽、蛋白构象和分子间弱相互作用。经过多年的努力,我们取得了一系列创新性成果,将界面电分析从一维界面拓展到三维纳米孔道,推动多维界面光电分析化学的发展。  相似文献   

12.
《中国科学院院刊》2007,22(4):315-315
寡聚噻吩既是制备高性能纳米器件的重要功能有机分子,义可用作模型化合物来研究有机电子传输的基本问题,因而其组装行为和单分子性质研究受到了广泛关注。化学所分子纳米结构与纳米技术院重点实验室的研究小组,近年来系统研究了寡聚噻吩分子的组装规律和组装结构。利用高分辨扫描隧道技术(STM),发现寡聚噻吩分子不仅本身可以形成稳定的组装结构,  相似文献   

13.
中国科技     
中国科学院化学研究所在超疏水性纳米界面材料的研究上取得突破性进展。他们以一种亲水性的高分子聚乙烯醇为原料,制备了具有超疏水性表面的纳米纤维,纤维表面与水的接触角大于170°。这种特殊的现象是由于聚乙烯醇分子形成了具有纳米结构的表面,分子在纳米结构表面发生重排,  相似文献   

14.
分子操纵与DNA芯片   总被引:3,自引:0,他引:3       下载免费PDF全文
分子操纵是当前物理学发展的一个前沿领域。在微米、亚微米和纳米尺度上对分子的直接操纵和探测是DNA芯片的物理、化学基础。文章在纳米科技研究工作的基础上对分子操纵和与之相关的交叉技术DNA芯片的发展和应用作一概述。  相似文献   

15.
纳米科学与技术新进展   总被引:1,自引:0,他引:1  
纳米科学与技术(简称纳米科技)是在纳米(1nm=10~(-9)米)尺度上研究物质(包括原子、分子)的特性和相互作用,以及利用这些特性的多学科的高新科技。它的最终目标是直接以原子、分子及物质在纳米尺度上表现出来的特性制造具有特定功能的产品,实现生产方式的飞跃。有人预言纳米科技将会给人类带来一次产业革命。本文简述了纳米科技的历史和最新进展,介绍了纳米生物学、纳米化学、纳米电子学、纳米机械学、纳米材料学方面的研究。另外对促使纳米科技发展的重要工具——扫描隧道显微镜(STM)和在STM基础上发展起来的其它扫描探针  相似文献   

16.
科学家在2月20日举行的美国科学促进协会年会上发言说,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入实际应用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机械的潜在应用领域包括  相似文献   

17.
叙述了半导体纳米微粒在聚合物分子中的原位制备方法、纳米微粒在 体相材料及膜材料中的复合与组装等相关工作,并对复合半导体纳米微粒的结构、性质及应 用进行了研究。  相似文献   

18.
正2016年5月7日,CrystEngComm杂志封面文章详细阐述了华南理工大学材料科学与工程学院邓文礼教授课题组在世界上第一个创建分子纳米尺度的"中国结"和"麦穗"结构。2016年8月7日,J.Phys.Chem.Lett.对通过卤键诱导实现分子组装的有效调控研究进行了报道,并选作"亮点  相似文献   

19.
科研进展     
《中国科学院院刊》2013,(4):531-541
中科大实现世界最高分辨率的单分子拉曼成像物质世界里的分子非常小,一般在1纳米左右,相当于人的头发丝直径的1/60 000。如此小的尺度,连光学显微镜都无能为力。如何在纳米甚至亚纳米尺度上实现分子成像并能  相似文献   

20.
《中国科学院院刊》2006,21(1):69-75
超高密度信息存储研究获系列进展不断完善纳米信息存储材料的功能是当今信息科学的重要研究方向。这类材料需具备更高的存储密度、更快的开关速度及更高的稳定性和重复性。其中,对有机功能纳米材料及纳米级电导相变研究,因其独特的结构和电光可控等优异特性而倍受人们的关注。物理所高鸿钧研究组及其合作者,在纳米信息存储材料与稳定重复的超高密度信息存储研究方面取得一系列进展。与化学所张德清研究员等合作,首次在Rotaxane分子固态薄膜中实现了分子导电性的转变和超高密度信息存储。通过STM针尖在Rotaxane分子薄膜上施加电压脉冲,在分…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号