共查询到20条相似文献,搜索用时 0 毫秒
1.
高等几何在初等几何中的作用 总被引:1,自引:0,他引:1
高等几何是初等几何的延深课程.高等几何为初等几何的有关内容提供了理论依据,高等几何为初 等几何的某些问题提供了解题方法,高等几何可把初等几何的某些内容拓广与延深. 相似文献
2.
Kapil H. Paranjape 《Resonance》1996,1(6):33-40
In the previous article the author examined curves and surfaces. One might hope to continue by analogy in many dimensions. The concept of working in many dimensions is so bewildering (yet today so matter-of-course) that it needed the genius of Bernhard Riemann to show us exactly how it can be done. In just one lecture on the foundations of geometry he completely changed our way of thinking. Later geometers were to spend entire lifetimes trying to finish what Riemann had begun. Some even see the genesis of General Relativity in his lecture. 相似文献
3.
Kapil H. Paranjape 《Resonance》1996,1(3):24-29
In the first two articles of this series the author described Euclidean geometry, coordinate geometry, trigonometry and measure theory. In this article he introduces non-Euclidean geometry and discusses tangents to curves and surfaces. These seemingly different notions will be brought together in the future when he discusses differential geometry. 相似文献
4.
高等几何在初等几何中的一些应用 总被引:1,自引:0,他引:1
廖小勇 《黔南民族师范学院学报》2006,26(6):24-26
从仿射几何和射影几何的理论与方法出发,探讨了它们在初等几何中的一些应用,有利于高等几何对初等几何教学的指导作用。 相似文献
5.
6.
7.
8.
9.
《中学数学教学参考》2008,(1):126-127
在解析几何中,人们建立了几何与代数之间的对应关系.几何中的基本概念及定理可以代数地描述和证明;代数中的基本概念和过程可以几何地解释.当一个几何问题看起来比较困难时,可考虑相应的代数问题.如果在这个特殊情况下,代数工具更加有效的话,我们就先代数地解决这个问题,而后把结果翻译成几何语言.但常常是沿相反的方向进行的. 相似文献
10.
11.
12.
13.
利用一个初等几何命题的结果,运用射影几何的方法得到若干射影几何命题,在通过将这些射影几何命题特殊化得到相关的初等几何命题。 相似文献
14.
《直观几何》及对我国几何课程改革的启示 总被引:1,自引:3,他引:1
结合俄罗斯新版几何教材-《直观几何》,介绍了俄罗斯中学几何教材的历史沿革,在此基础上,从几何课程范式的转变、几何的现实性与理性思维之间的关系及几何教学的重新定位,即“做数学”应成为有效学习策略的核心等方面概括出此教材对我国几何课程改革的诸多启示,如几何教学需要学生的积极实践,老师的角色应是组织者、引导者与合作者,师生间要建立一种和谐的互动局面等。 相似文献
15.
高等几何命题对初等几何的指导作用探讨 总被引:2,自引:0,他引:2
杜家安 《安阳师范学院学报》2000,(2):1-3
通过实例,分析,探讨高等几何命题对于初等几何的高观点指导作用。在更高层面上认识几何空间的基本特性、研究方法、内在联系,确认几何学的本质,从而发展几何空间的概念,以便更深入地认识和掌握初等几何,指导初等几何的教学与研究,居高临下地认识初等几何的内涵与外延。同时,进一步认识到高等几何不仅在提高观点方面具有独特作用,而且在论证方法,思考问题等方面具有独特的巧妙,灵活等特点。 相似文献
16.
李祖军 《黔南民族师范学院学报》2009,29(3):88-90
本文总结了把立体几何图形简单化归为平面几何图形的方法,着重突出了平面几何与立体几何的联系与转化,以在一定程度上缓解或减轻学生在学习立体几何时的空间想象能力普遍不足的缺陷. 相似文献
17.
谭青云 《湖南城市学院学报》2002,19(6):19-22
由相平面的奇点理论 ,得到了判别力学系统稳定性的几何表示———稳定域 .它与KTC定理 ,首次近似特征方程相比 ,能够较全面地、形象地、直观地表述系统的稳定性 相似文献
18.
Daniela Velichová 《European Journal of Engineering Education》2002,27(3):289-296
In this paper, a few examples are given of the importance of mathematical geometric education for engineers. The newly established information civilization, utilizing new information media, requires an abbreviated form of delivering enormous amounts of information at incredible speed. We use and relay models and involve them in our communication in almost all branches of science, culture, education, or social life. Models are strictly based on some graphical information. They are independent and almost perfectly understood at all levels of human literacy. Different scientific branches invented different models with respect to different needs and applied techniques, while the basic original idea of creating an'image' remained. Engineering education today is a complex knowledge base composed of several separate parts of different scientific and professional technical branches of the complex human knowledge, where geometry plays its definite important role. It is the basic platform to get involved with the creation of models in the form of images. Geometry can offer an unprecedented basis for logical reasoning supported by practical applications. Good three-dimensional visualization, spatial capabilities and geometric understanding are invaluable components of creative work in all kinds of human activities. An information society using communication techniques concentrates nowadays on creating models of an object in the form of computer images. Creative processes of modelling objects in scenes are related basically to the synthetic geometric reasoning and depend on the skills and geometric knowledge of the users. We must take this fact into consideration when speaking about teaching geometry to engineers.
Geometry is not just a simple science, nor the way to knowledge. It is an intellectual arrangement. From the arrangement, all European culture originated. 相似文献
19.
20.