首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本阐明了形成分子间与分子内氢键的条件,并比较了物质形成分子间与分子内氢键后对物质性质的影响及其差异。  相似文献   

2.
氢键键能小 ,一般在 2 4 KJ/mol左右 ,比共价键键能小得多。难怪乎一些化学资料以及化学课本把氢键入另册 ,甚至把它排在化学键之外。其实在很多物质的分子中都有它的存在。氢键既是分子间作用力 ,也是分子内的作用力。氢键是一个很重要的“化学键”。一、氢键与物质的水溶性一些易溶于水难电离的分子化合物有亲水性的原因 ,大多是能与水分子形成氢键之故。低级醇、低级醛、低级脂肪酸以及蛋白质、糖类等分子中的一些基因能与水分子形成氢键 ,所以都易溶于水。乙醇能与水以任意比例混溶 ,它的亲水性可谓强矣。原因是乙醇分子中羟基能与水分…  相似文献   

3.
叶益晨 《化学教学》2022,(12):95-97
运用Gaussian软件对分子的极性、电荷分布等数据进行计算并结合理论分析,探讨几种有机物分子内氢键的形成及其对分子极性的影响。结果表明,分子内氢键的形成可能改变分子不同构象的占比及共价键的极性,进而改变整个分子的极性,并对物质的沸点产生影响。  相似文献   

4.
氢键和π-π弱相互作用力在形成超分子结构中起着非常重要的作用.本文中反-丁烯二酸和反-1,2-二(4-吡啶基)乙烯通过氢键和π-π弱相互作用形成超分子.去质子化的反-丁烯二酸阴离子和质子化的反-1,2-二(4-吡啶基)乙烯通过N-H…O氢键形成一维链状结构.通过吡啶环之间的π-π弱相互作用形成二维的层状结构,通过相邻层之间的C-H…O氢键形成三维的结构,所以氢键和π-π相互作用对此超分子的形成起了决定性的作用.  相似文献   

5.
在分子间相互作用和化学反应研究中,氢键分子团簇是十分重要的.这些复合体的显著相关特征之一就是氢键合协调性,复合体的结构和结合能与体系的大小紧密相关. 在分子团簇中形成的主要分子间作用力是氢键.  相似文献   

6.
本文在经典分子间作用力与氢键的基础上,着重从一个分子所能形成的氢键数目的不同,以及使液态沸腾时破坏氢键的程度不同,这两个方面讨论了HF沸点远低于H_2O沸点的原因。较好地解释了HF沸点远低于H_2O沸点的反常现象。  相似文献   

7.
蓝蓝和 《初中生》2014,(16):26-27
正雪花为何多为六角形?DNA为什么能形成双螺旋结构?蛋白质分子何以相互作用?这些有趣问题的答案,都离不开对氢键的认识。科学家在1936年就通过理论分析提出了"氢键"的概念,但一直不能"眼见为实"。氢键作为化学键的一部分,对于影响物质的化学性质有一定的作用。虽然它并非分子组成的一种价键,却影响分子的性质。中学生可能对这些颇感兴趣,然而中学知识范围内,对于氢键只是提及,而并不是深入。神秘氢键的倩影被我国科学家用照片记  相似文献   

8.
氢键和π-π弱相互作用力在形成的超分子结构中起着非常重要的作用.本文中,去质子化的1,1,2,2-四乙酸阴离子和质子化的苯并咪唑通过N-H…O和C-H…O氢键形成三维结构,在结构堆积中苯并咪唑分子之间的叮π-π弱相互作用也对此超分子的形成起了决定性的作用.  相似文献   

9.
第一章化学键和分子结构本章新增加五题。 P.28 4.(1)原子晶体(2)分子晶体(3)离子晶体(4)分子晶体 5.氯化氢分子间有氢键生成,这是因为氯原子电负性较大,H-Cl键极性较强,与Cl原子通过静电吸引可以形成氢键。但由于氯原子半径大,所形成的氢键很弱,对化合物的性质几乎没有什么影响。而甲烷分子间,由于碳原子电负性较小,一般不生成氢键。这可从它们的物理性质推断  相似文献   

10.
对胸腺嘧啶晶体的拉曼光谱进行了实验测量。考虑到胸腺嘧啶晶体分子之间形成氢键会对分子拉曼光谱产生影响,文章运用了DFr理论分别计算了气相状态、加入两个水分子模拟分子间氢键(dehydrates态)和氢键二聚体(dimer态)的胸腺嘧啶分子的拉曼光谱。结果表明:在氢键作用下,dehydrates态和dimer态在频率1691cm-1、1734cm-1、3468cm-1和3509cm-1处都发生了红移;600cm-1以下频段,dehydrates态和dimer态拉曼活性较弱,与实验结果有很大差距;分子问氢键作用对拉曼光谱的影响主要在1500cm-1以下的低频部分,对2000cm-1以上的高频部分影响不大;采用胸腺嘧啶分子dimer态计算拉曼光谱,大部分频率分布比dehydrates更接近实验值,使得氢键二聚体模型更适合于胸腺嘧啶分子的拉曼光谱计算.  相似文献   

11.
通过理论分析并结合实验事实论证了一水合氨氢键结构只存在一种形式;即一水合氨的氢键是由水分子提供氢原子而氨分子给出孤电子对形成的:O—H┄N;不会是由氨分子提供氢原子而水分子给出孤电子对形成的:N—H┄O;也不会是两者共存。  相似文献   

12.
一、有机化合物中的氢键我们已经学过分子间的吸引力如静电力、范德华力和氢键是影响化合物物理性质的主要因素,这里只对有机化合物中的氢键进行一些讨论,供学习参考。氢键是分子中的氢原子与电负性大而原子半径又较小的原子(如N、O、F)相结合形成极性键,如(?),O—H,F—H,其中N、O、F带有部份负电荷,H带有部份正电荷,与裸露的氢质子有些类似。这种带部份正电荷的氢与另一分子中带部份负电荷的原子之间产生的吸引力称为氢键(用虚线表示氢键)。这里必须强调氢键仅是一种特殊效应,只有当氢原子与第二周期的N、O、F相连时才能形成氢键,与其它原子相连的  相似文献   

13.
运用MP2方法对N-H…O=C氢键二聚体中氢键强度进行了研究,探讨了氢键受体分子中不同取代基对N-H…O=C氢键强度的影响.研究发现,可以通过改变取代基来调节二聚体中N-H…O=C氢键强度.取代基为供电子基团,氢键强度增强.取代基为吸电子基团,氢键强度减弱.自然键轨道(NBO)分析表明,N-H…O=C氢键强度越强,参与形成氢键的氢原子的电荷越正,氧原子的电荷越负,单体分子间电荷转移越多,N-H…O=C氢键中氧原子的孤对电子n(O)对N-H的反键轨道σ*(N-H)的二阶稳定化能越大.  相似文献   

14.
用苯乙酸做配体合成了苯乙酸铜的配合物,在配合物中,三个苯乙酸根参与配位,而一个苯乙酸根做为平衡离子存在于晶体中,邻啡罗啉提供两个N原子参与配位,形成铜的五配位双核配合物.分子内氢键和分子间氢键将分子连接成三维网状结构.  相似文献   

15.
用苯乙酸做配体合成了苯乙酸铜的配合物,在配合物中,三个苯乙酸根参与配位,而一个苯乙酸根做为平衡离子存在于晶体中,邻啡罗啉提供两个N原子参与配位,形成铜的五配位双核配合物.分子内氢键和分子间氢键将分子连接成三维网状结构.  相似文献   

16.
从水的密度、水分子结构、冰的结构、水分子间的氢键及水分子的缔合等入题,分析了对水的反常膨胀;从微冰结构、晶体结构、极性分子及分子缔合几种解释方法,认为用水分子间形成氢键缔合水分子理论解释水的反常膨胀最为科学,与实验事实及晶体理论相吻合。  相似文献   

17.
氢键的类型和本质   总被引:1,自引:0,他引:1  
氢键是一种最常见也是最重要的分子间或分子内的相互作用,其强度变化幅度很大.氢键虽然是一种弱键,但由于它的形成将对物质的聚集状态产生影响,所以物质的物理性能、形状结构等方面会发生明显的变化和很大的影响.  相似文献   

18.
在有机化合物中广泛存在着分子内氢键或分子间氢键,多种因素影响着氢键效应,氢键效应对有机物的理化性质和反应活性产生较大的影响。  相似文献   

19.
1氢键 氢键是分子间的作用力,指和负电性原子或原子团共价结合的氢原子(正电性)与邻近的负电性原子(往往为氧或氮原子)之间形成的一种非共价键、作用力。  相似文献   

20.
用密度泛函方法和分子动力学模拟方法详细研究了具有高效、广谱特点的蒽环类非细胞周期特异性抗肿瘤抗生素阿霉素水溶液的结构特征及其氢键相互作用.其中,密度泛函方法用于优化阿霉素分子的结构,获得用于分子动力学模拟的平衡结构和组成原子的残余电荷;分子动力学模拟研究溶液中阿霉素极性基团周围的冰分布.结果表明,阿霉素周围平均约有10.26个水分子与其极性基团形成氢键;其中,作为质子受体形成7.23个氢键,作为质子供体形成3.03个氢键.由于阿霉素极性基团周围的环境不同,与水的相互作用特性不同:作为质子给体形成氢键的是氨基糖苷上的羟基和氨基,其他极性基团只作为质子受体形成氢键.这些极性基团形成氢键的强度顺序为:位于氨基糖苷的羟基和氨基>醌环羰基和D环烷氧基>B环羟基和A环侧链.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号