首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三、圆锥曲线的焦点弦问题过焦点的直线与圆锥曲线相交,两个交点的线段叫焦点弦,与焦点弦有关的圆锥曲线问题常用定义(特别是第二定义中的焦半径公式)把问题转化.1.如果弦MN过椭圆的焦点F1,设M(x1,y1),N(x2,y2),则|MN|=a ex1 a ex2=2a e(x1 x2).【例6】设椭圆方程为ax22 by22=1  相似文献   

2.
在近两年高考数学试卷中,多次出现以向量等式为条件的有心圆锥曲线焦点弦问题,若用第二定义进行转化则容易解决,但新课标中不要求掌握第二定义的应用.极坐标方程、参数方程的方法虽然运算量小,但学生掌握起来比较困难。况且新课程又将此部分内容放在选修课程里面进行讲解.另外用直线方程和圆锥陆线方程联立运算量大.令很多学生望而却步.笔者经过研究,发现可以用余弦定理来解决此类问题.  相似文献   

3.
极坐标的应用十分广泛,涉及圆锥曲线焦点弦的有关问题,可建立焦点极坐标系,利用椭圆、双曲线、抛物线统一的极坐标方程ρ=ep/1-ecosθ,或建立直角坐标系,运用坐标关系x=ρcosθ y=ρsinθ,把问题转化为极坐标,用极坐标法解.此法使问题化难为易、化繁就简,具有解法新颖巧妙、过程简单等特征. 一、求值问题:求圆锥曲线焦点弦长,与焦点弦有关的角、线段、点线距离、图形面积等,用极坐标法解,可避免解方程组求交点坐标、运用直标公式作繁琐运算. 例1 椭圆长轴|A_1A_2|=6,焦距  相似文献   

4.
圆锥曲线极坐标方程的研究性学习   总被引:1,自引:0,他引:1  
椭圆、双曲线和抛物线可以统一定义为:与一个定点(焦点)和一条直线(准线)的距离之比等于常数(离心率)的点的轨迹.由于它们的离心率不同,所以这三种曲线的方程在直角坐标系下很难统一,给研究有关问题(如焦半径问题)带来不便.极坐标系作为一种研究问题的方法,在研究直线、圆、圆锥曲线、螺线、玫瑰线、圆柱面等方程形式极其简化,为此课标课程教材中专门用一章介绍极坐标系及其应用,由于多种原因这部分选修内容中没有圆锥曲线极坐标方程,而高考中考查圆锥曲线性质是一个重点,其中有些问题若用极坐标方程求解极为便捷.本文介绍圆锥曲线极坐标方程,研究其若干性质,并用这些性质速解一些高考题.  相似文献   

5.
《平面解析几何》(全一册)教材根据椭圆、双曲线、抛物线的统一定义推出了它们统一的极坐标方程,方程形式为ρ=ep/(1-ecosθ)当 0 < e<1时,方程表示椭圆,定点是它的左焦点,定直线是它的左准线;e=1时.方程  相似文献   

6.
本文主要是从极坐标的角度来考虑焦点弦问题,尤其是当其中一个焦半径与另一个焦半径之间呈倍数关系时,在求解直线的方程时,运用极坐标思想可以极大地简化运算过程,缩减运算量。  相似文献   

7.
文[1]结合两道高考题定义了“椭圆焦点弦四边形”,进而提出并证明了两个定理.其中定理2如果椭圆的长半轴为a,短半轴为b,那么两条焦点弦所在直线的斜率之积为定值-m(m≥1)的椭圆的焦点弦四边形面积有最小值,  相似文献   

8.
一般说来,证明椭圆、抛物线中的某些倒数和为定值问题中,都可利用二次曲线的极坐标方程来解决,现举例如下。 例1 经过椭圆的焦点F任意作两条互相垂直的弦AB和CD,求证: 1/|AB| 1/|CD|为定值。 证 建立如图所示的极坐标系。 此时,椭圆的极坐标方程为:  相似文献   

9.
求椭圆的弦长问题,是椭圆中的一个基本问题,看上去似乎简单,做起来才深感麻烦.一旦椭圆方程或弦所在直线方程比较复杂时,将直线方程代入椭圆方程后,再通过应用韦达定理和距离公式等等去求出其解,其过程更加烦琐,学生往往因此而导致错误或半途而废.为了解决这一问题,本文试图将常用的弦长公式向“倾斜角”上推进,以便减少运算量,速解弦长.  相似文献   

10.
<正>许多抛物线问题的解答都牵扯着一个重要的因素,那就是抛物线的焦点,而抛物线的焦点往往又会联系到抛物线的定义,由此会产生一系列问题,诸如焦点弦的弦长问题、焦点弦的弦所在的直线方程问题、抛物线方程问题等。一、焦半径与抛物线定义结合求值例1已知F是抛物线y2=x的焦点,  相似文献   

11.
涉及圆锥曲线的过焦点的弦长比问题,一般采用圆锥曲线的统一极坐标方程求解.现在的考试说明中已取消了对圆锥曲线的统一极坐标方程的要求,而这类弦长比问题依然存在,因此有必要去寻求其直角坐标解法.下面举两例介绍这类问题的一种直角坐标解法.  相似文献   

12.
寻求较好的解题途径是解决解析几何问题的关键.本文探讨一类焦点弦问题的几何解法,并给出相应结论. 引例过椭圆 x~2/4 y~2=1左焦点 F 引直线截椭圆的弦被 F 分成上、下两段之比为2∶1,则该直线的斜率为_______.分析:有的学生是这样考虑的:先求得F(-3~(1/2),0),再设直线 AB 的方程为 y=k(x 3~(1/2)),再将该方程与椭圆方程联立,求出 A、B的坐标,最后由|AF|∶|FB|=2∶1求出斜率k.  相似文献   

13.
我们知道,圆锥曲线上一点与焦点的连线称为焦半径.因此,圆锥曲线的一条焦点弦被该焦点分成两条焦半径(焦点可以是内分点,也可以是外分点).在旧版高中教材中,用圆锥曲线的极坐标方程研究焦半径和焦点弦是比较方便的.现行新教材删去了极坐标内容,但我们仍然可以用新教材的观点和方法推导出使用方便、记忆简单的焦半径和焦点弦的三角形式的公式.  相似文献   

14.
经过二次曲线的一个焦点,作等于定长m的弦,在什么情况下可作?可作时又能作几条?弦所属直线的方程是什么?本文将简明扼要地回答上述问题.先求焦点弦长的最小值.设二次曲线的方程是过焦点F的弦为对于抛物线、椭圆或弦AB的两端点在双曲线的同一支上时,如果弦AB的两端点分别在双曲线的两不同支上时,则所以m=-(p_1 p_2)=时取等号由此知,对于抛物线,|AB|≥2p;对于椭对于双曲线则当a>b时,于是有如下结论:一、抛物线设抛物线方程为y~2=2px,(p>0),焦点(1)当0<m<2p时,无焦点弦;有一条,即通径,弦AB所属直线的方程是(以下称…  相似文献   

15.
定义:以椭圆的两条焦点弦为对角线的四边形称之为椭圆焦点弦四边形.  相似文献   

16.
抛物线弦长问题同椭圆和双曲线的弦长问题很相似,它是圆锥曲线的一类基本问题。文章以焦点在x轴正半轴上的抛物线为例,利用抛物线的参数方程推导出了当直线斜率存在与不存在两种情况下相对应的直线与抛物线相交时弦长的一般计算公式,并结合四个具体实例强化两个公式的应用。  相似文献   

17.
过圆锥曲线焦点的弦称为焦点弦,关于焦点弦问题,除了运用弦长公式外,常利用过焦点的特点,即用圆锥曲线统一定义求出焦半径,从而得到焦点弦的长,也可使与焦点弦相关的问题获得简解,达到优化解题、提高解题效率的效果.圆锥曲线的统一定义:与定点(焦点)的距离与对应的一条定直线(准线)的距离的比等于常数(离心率e)的点的轨迹为圆锥曲线,当01时轨迹为双曲线,当e=1时轨迹为抛物线.  相似文献   

18.
在数学教学和学生的数学学习过程中常常会遇到过椭圆、双曲线、抛物线焦点弦长的计算问题,为了计算方便,下面通过这3种圆锥曲线的定义推导出它们在标准方程下所对应的弦长公式.  相似文献   

19.
题目:求通过圆锥曲线的焦点,并且和焦点所在的对称轴的夹角为θ的直线被圆锥曲线所截的弦长。解:如图建立极坐标系,则圆锥曲线的极坐标方程为ρ=ep/(1-ecosθ)。设直线与曲线交于两点  相似文献   

20.
<正>一、问题提出题目:已知曲线C的极坐标方程是ρ=2cosθ+4sinθ,P点的极坐标为3,(π/2),以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系xOy,在平面直角坐标系中,直线l经过点P,倾斜角为π/3。(Ⅰ)写出曲线C的直角坐标方程和直线l的参数方程。(Ⅱ)设直线l与曲线C相交于A,B两点,求AB的长。问题:求直线与圆锥曲线的交点弦的弦长时,为什么在直线方程是参数方程的情况下要用参数方程中的弦长公式AB=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号