共查询到20条相似文献,搜索用时 15 毫秒
1.
张敬坤 《中学数学教学参考》2006,(11):38-39
文[1]、文[2]分别给出了三角形外角平分线三角形的若干性质.它作为与一个三角形有着特殊关系的三角形,应有很多优美的性质,就像矿藏一样,不将这些矿藏挖掘出来,总感到意犹未尽.基于这个想法,笔者进一步研究了三角形的外角平分线三角形.现将新得到的几个性质归纳总结出来以飨读者. 相似文献
2.
关于三角形外角平分线三角形文[1]已给出几个性质,本文再给出关于它的几个性质,以作为对文[1]的补充和完善. 相似文献
3.
文[1]、文[2]分别给出了三角形外角平分线三角形的若干性质.它作为与一个三角形有着特殊关系的三角形,应有很多优美的性质,就像矿藏一样,不将这些矿藏从这个矿点里挖掘出来,总感到意犹未尽.基于这个想法,笔者进一步研究了三角形的外角平分线三角形.现将又得到的几个性质归结出来以飨读者.图1如图1,记△A′B′C′为△ABC的外角平分线三角形,△ABC的外接圆半径和内切圆半径分别为R、r,三内角A、B、C所对边的长分别为a、b、c,S为其半周长,△为其面积;△A′B′C′的三内角A′、B′、C′所对边的长分别为a′、b′、c′,△′为其面积.则:… 相似文献
4.
5.
三角形的外角平分线有下面的性质(应用Menelaus定理容易证明): 定理0^[1] 三角形的外角平分线与对边相交,三个交点共线.本文拟将这个性质引申至三维空间,证明四面体中的外二面角平分面的一个性质,即有 定理1 经过四面体的一条棱的外二面角平分面与对棱相交,六个交点共面. 相似文献
6.
7.
本文探讨了“位于一角对边异侧的另两外角平分线与其对边所在直线相交”的条件。并推导出“位于一角对边异侧的另两外角平分线与其对边所在直线相交,且长相等”的条件公式。 相似文献
8.
9.
本文给出了不等边三角形两条外角平分线相等的两个充要条件,并证明(1)已知a,b,a≠b,存在唯一c,以a,b,c为边长可作不等边三角形,且t_a=t_b;(2)已知c,0°<C<60°,存在A,B,以A,B,C为内角可作不等边三角形,且t_a=t_b。 相似文献
10.
文[1]、[2]、[3]等给出了外角平分线构成的三角形几个有趣的性质,本文得到定理如图,△DEF是△ABC三条外角平分线构成的三角形,设BC=a,CA=b,AB=c,2s=a+b+c,I为△ABC的内心,且DI=x,EI=y,FI=z,△ABC的外接圆和内切圆半径分别为R、r,则4sin2sin2sin2x A=y B=z C=R(1)首先给出一个引理.引理设I为△ABC的内心,则AD、BE、CF交于I点,且I为△DEF的垂心.略证∵?DEF是△ABC三条外角平分线构成的三角形,∴D、E、F为△ABC的旁心[4],显然AD、BE、CF为∠A、∠B、∠C的平分线,则它们交于I点;又∵2∠D AC=A,222∠E AC=B+C=π?… 相似文献
11.
我们知道,三角形的外角有这样的性质:三角形的一个外角等于与它不相邻的两个内角的和,大于任何一个与它不相邻的内角.这个性质是研究三角形的重要基础知识,应用也非常广泛.现分类举例说明.一、计算角度例1如图1,D是△ABC中CB的延长线上一点,DOAB于0,C=40°,D=30°,求1和A.解1=90°+D=90°+30°=120°,A=180°-120°-40°=20°.例2如图2,△ABC中,BD平分ABC,1=3,4=5,求5的度数.解设1=3=x,则2=x,5=4=1+3=2x.在△BCD中,… 相似文献
12.
三角形的外角有两条性质: 1.三角形的一个外角等于与它不相邻的两个内角的和; 2.三角形的一个外角大于任何一个与它不相邻的内角.这两条性质都表明了三角形的外角与内角之间的一种关系.第1条性质常常用于在几何图形中寻找角与角之间的相等关系;第2条性质常常用于证明角与角之间的不等关系(大小关系).可以用三角形外角性质解答的题目通常都存在共同的特征,下面通过两个具体的例子来总结其中的规律. 相似文献
13.
14.
张兴民 《语数外学习(初中版)》2010,(4):26-27
三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角,这是三角形外角的两条重要的性质,利用这两条性质可以解决许多相关的问题.下面举例说明. 相似文献
15.
作者蒋声。容易证明,等腰三角形两个底角的外角平分线长度相等。那么,有两条外角平分线长度相等的三角形,是否必为等腰三角形呢?否。本文证明存在无穷多个不同形状的不等边三角形,它们都有两条外角平分线的长度相等,并导出一个确定这些三角形的一般公式。 相似文献
16.
程维敏 《苏州教育学院学报》1997,(2)
三角形内、外角平分线的性质常见于几何计算题和证明题中.但是,三角形内、外角平分线本身长度的应用问题则比较少.本文将对三角形内、外角平分线的长度及其应用作一些初浅的探讨.一、三角形内、外角平分线的长问题一、已知△ABCK,∠A、∠B,∠C的对边分别为a,c.AD是∠BAC的平分线,试用a,b,c表示AD.解:设∠ADC=α,则∠ADB=180°-α∴AD是角平分线∴BD/DC=c/b ∴BD/DC=c/b c ∴BD=ac/b c 同理CD=ab/(?) c 相似文献
17.
18.
文[1]证明了 定理1 在不等边ΔABC中,∠A、∠A外角平分线相等的充要条件是:p_c/c是p_a/a和p_b/b的比例中项(其中a、b、c分别为ΔABC中∠A、∠B、∠C的对边,p为半周长,p_a=p-a,p_b=p-b,p_c=p-c). 相似文献
19.
卢长辛 《中学生数理化(高中版)》2011,(8):4-4
三角形的外角有两个性质:三角形的一个外角等于和它不相邻的两个内角的和,三角形的一个外角大于任何一个和它不相邻的内角.利用外角的这两个性质可以解决许多问题,下面举例说明. 相似文献
20.
引理1对任意乙A,乙B,有恒等式 B)、、产尸B一2 s*n,cOS(普士S、·:一(A (51·鲁不S‘·号)·(一甲士S;·普S、·粤)· 引理2在△ABC中, (a 乙 c),则、,.1飞已夕=.万. 石in兰=‘Z匡三亘正三)‘ ZY乙e定理在不等边△ABC中,乙A,匕B的外角平分线相等的充要条件是:罕为之二夕 P一b邵,。卜扬一由偌,一了一目U卜‘{夕lJ’一尸刊德. U 证明必要性.设乙A,乙B的外角平分线分别为AD夕B刀,则D,E位置有四种可能:(i)了月,匕C为锐角,匕B为钝角,则B位于DC之间,C位于且E之间(如图);(2)乙A,乙五为说角,乙C为钝角,C位于BD间,同时户性于A刀间… 相似文献