首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文[1]、文[2]分别给出了三角形外角平分线三角形的若干性质.它作为与一个三角形有着特殊关系的三角形,应有很多优美的性质,就像矿藏一样,不将这些矿藏挖掘出来,总感到意犹未尽.基于这个想法,笔者进一步研究了三角形的外角平分线三角形.现将新得到的几个性质归纳总结出来以飨读者.  相似文献   

2.
关于三角形外角平分线三角形文[1]已给出几个性质,本文再给出关于它的几个性质,以作为对文[1]的补充和完善.  相似文献   

3.
文[1]、文[2]分别给出了三角形外角平分线三角形的若干性质.它作为与一个三角形有着特殊关系的三角形,应有很多优美的性质,就像矿藏一样,不将这些矿藏从这个矿点里挖掘出来,总感到意犹未尽.基于这个想法,笔者进一步研究了三角形的外角平分线三角形.现将又得到的几个性质归结出来以飨读者.图1如图1,记△A′B′C′为△ABC的外角平分线三角形,△ABC的外接圆半径和内切圆半径分别为R、r,三内角A、B、C所对边的长分别为a、b、c,S为其半周长,△为其面积;△A′B′C′的三内角A′、B′、C′所对边的长分别为a′、b′、c′,△′为其面积.则:…  相似文献   

4.
定义 以三角形相邻两外角平分线的交点为顶点的三角形称之为原三角形的外角平分线三角形.  相似文献   

5.
三角形的外角平分线有下面的性质(应用Menelaus定理容易证明): 定理0^[1] 三角形的外角平分线与对边相交,三个交点共线.本文拟将这个性质引申至三维空间,证明四面体中的外二面角平分面的一个性质,即有 定理1 经过四面体的一条棱的外二面角平分面与对棱相交,六个交点共面.  相似文献   

6.
7.
本文探讨了“位于一角对边异侧的另两外角平分线与其对边所在直线相交”的条件。并推导出“位于一角对边异侧的另两外角平分线与其对边所在直线相交,且长相等”的条件公式。  相似文献   

8.
9.
本文给出了不等边三角形两条外角平分线相等的两个充要条件,并证明(1)已知a,b,a≠b,存在唯一c,以a,b,c为边长可作不等边三角形,且t_a=t_b;(2)已知c,0°<C<60°,存在A,B,以A,B,C为内角可作不等边三角形,且t_a=t_b。  相似文献   

10.
文[1]、[2]、[3]等给出了外角平分线构成的三角形几个有趣的性质,本文得到定理如图,△DEF是△ABC三条外角平分线构成的三角形,设BC=a,CA=b,AB=c,2s=a+b+c,I为△ABC的内心,且DI=x,EI=y,FI=z,△ABC的外接圆和内切圆半径分别为R、r,则4sin2sin2sin2x A=y B=z C=R(1)首先给出一个引理.引理设I为△ABC的内心,则AD、BE、CF交于I点,且I为△DEF的垂心.略证∵?DEF是△ABC三条外角平分线构成的三角形,∴D、E、F为△ABC的旁心[4],显然AD、BE、CF为∠A、∠B、∠C的平分线,则它们交于I点;又∵2∠D AC=A,222∠E AC=B+C=π?…  相似文献   

11.
我们知道,三角形的外角有这样的性质:三角形的一个外角等于与它不相邻的两个内角的和,大于任何一个与它不相邻的内角.这个性质是研究三角形的重要基础知识,应用也非常广泛.现分类举例说明.一、计算角度例1如图1,D是△ABC中CB的延长线上一点,DOAB于0,C=40°,D=30°,求1和A.解1=90°+D=90°+30°=120°,A=180°-120°-40°=20°.例2如图2,△ABC中,BD平分ABC,1=3,4=5,求5的度数.解设1=3=x,则2=x,5=4=1+3=2x.在△BCD中,…  相似文献   

12.
三角形的外角有两条性质: 1.三角形的一个外角等于与它不相邻的两个内角的和; 2.三角形的一个外角大于任何一个与它不相邻的内角.这两条性质都表明了三角形的外角与内角之间的一种关系.第1条性质常常用于在几何图形中寻找角与角之间的相等关系;第2条性质常常用于证明角与角之间的不等关系(大小关系).可以用三角形外角性质解答的题目通常都存在共同的特征,下面通过两个具体的例子来总结其中的规律.  相似文献   

13.
14.
三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角,这是三角形外角的两条重要的性质,利用这两条性质可以解决许多相关的问题.下面举例说明.  相似文献   

15.
作者蒋声。容易证明,等腰三角形两个底角的外角平分线长度相等。那么,有两条外角平分线长度相等的三角形,是否必为等腰三角形呢?否。本文证明存在无穷多个不同形状的不等边三角形,它们都有两条外角平分线的长度相等,并导出一个确定这些三角形的一般公式。  相似文献   

16.
三角形内、外角平分线的性质常见于几何计算题和证明题中.但是,三角形内、外角平分线本身长度的应用问题则比较少.本文将对三角形内、外角平分线的长度及其应用作一些初浅的探讨.一、三角形内、外角平分线的长问题一、已知△ABCK,∠A、∠B,∠C的对边分别为a,c.AD是∠BAC的平分线,试用a,b,c表示AD.解:设∠ADC=α,则∠ADB=180°-α∴AD是角平分线∴BD/DC=c/b ∴BD/DC=c/b c ∴BD=ac/b c 同理CD=ab/(?) c  相似文献   

17.
角是平面几何中基本的、重要的概念之一,也是学好直线形和圆的基础.本文谈谈三角形外角的性质及应用.  相似文献   

18.
文[1]证明了 定理1 在不等边ΔABC中,∠A、∠A外角平分线相等的充要条件是:p_c/c是p_a/a和p_b/b的比例中项(其中a、b、c分别为ΔABC中∠A、∠B、∠C的对边,p为半周长,p_a=p-a,p_b=p-b,p_c=p-c).  相似文献   

19.
三角形的外角有两个性质:三角形的一个外角等于和它不相邻的两个内角的和,三角形的一个外角大于任何一个和它不相邻的内角.利用外角的这两个性质可以解决许多问题,下面举例说明.  相似文献   

20.
引理1对任意乙A,乙B,有恒等式 B)、、产尸B一2 s*n,cOS(普士S、·:一(A (51·鲁不S‘·号)·(一甲士S;·普S、·粤)· 引理2在△ABC中, (a 乙 c),则、,.1飞已夕=.万. 石in兰=‘Z匡三亘正三)‘ ZY乙e定理在不等边△ABC中,乙A,匕B的外角平分线相等的充要条件是:罕为之二夕 P一b邵,。卜扬一由偌,一了一目U卜‘{夕lJ’一尸刊德. U 证明必要性.设乙A,乙B的外角平分线分别为AD夕B刀,则D,E位置有四种可能:(i)了月,匕C为锐角,匕B为钝角,则B位于DC之间,C位于且E之间(如图);(2)乙A,乙五为说角,乙C为钝角,C位于BD间,同时户性于A刀间…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号