首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anatomy teaching methods have evolved as the medical undergraduate curriculum has modernized. Traditional teaching methods of dissection, prosection, tutorials and lectures are now supplemented by anatomical models and e‐learning. Despite these changes, the preferences of medical students and anatomy faculty towards both traditional and contemporary teaching methods and tools are largely unknown. This study quantified medical student and anatomy faculty opinion on various aspects of anatomical teaching at the Department of Anatomy, University of Bristol, UK. A questionnaire was used to explore the perceived effectiveness of different anatomical teaching methods and tools among anatomy faculty (AF) and medical students in year one (Y1) and year two (Y2). A total of 370 preclinical medical students entered the study (76% response rate). Responses were quantified and intergroup comparisons were made. All students and AF were strongly in favor of access to cadaveric specimens and supported traditional methods of small‐group teaching with medically qualified demonstrators. Other teaching methods, including e‐learning, anatomical models and surgical videos, were considered useful educational tools. In several areas there was disharmony between the opinions of AF and medical students. This study emphasizes the importance of collecting student preferences to optimize teaching methods used in the undergraduate anatomy curriculum. Anat Sci Educ 7: 262–272. © 2013 American Association of Anatomists.  相似文献   

2.
As curricular emphasis on anatomy in undergraduate medical education continues to evolve, new approaches to anatomical education are urgently needed to prepare medical students for residency. A surgical anatomy class was designed for third- and fourth-year medical students to explore important anatomical relationships by performing realistic surgical procedures on anatomical donors. Under the guidance of both surgeons and anatomists, students in this month-long elective course explored key anatomical relationships through performing surgical approaches, with the secondary benefit of practicing basic surgical techniques. Procedures, such as left nephrectomy, first rib resection for thoracic outlet syndrome, and carotid endarterectomy, were adapted from those used clinically by multiple surgical subspecialties. This viewpoint commentary highlights perspectives from students and instructors that suggest the value of a surgical approach to anatomical education for medical students preparing for procedure-oriented residencies, with the goals of: (1) describing the elective at the authors' institution, (2) promoting similar efforts across different institutions, and (3) encouraging future qualitative and quantitative studies of similar pedagogic efforts.  相似文献   

3.
A student's own body provides an often disregarded site of knowledge production and corporeal wisdom. Learning via cognitive processes anchored in physical movement and body awareness, known as embodied learning, may aid students to visualize structures and understand their functions and clinical relevance. Working from an embodied learning perspective, the current article evaluates the use of an offline physical learning tool (Anatomical Glove Learning System; AGLS) for teaching hand anatomy for clinical application in medical students. Two student samples (N1 = 105; N2 = 94) used the AGLS in two different ways. In the first sample, the AGLS was compared to a traditional approach using hand bones, models and prosected specimens. Secondly, the AGLS and traditional approach were combined. The evaluation consisted of three outcomes: short-term learning (post-test), medium-term applications (mock-objective structured clinical examination, MOSCE), and longer-term assessment (objective structured clinical examination, OSCE). Findings from the first sample indicated no significant differences between the AGLS and traditional laboratory groups on short- (F(1,78) = 0.036, P = 0.849), medium- (F(1,50) = 0.743, P = 0.393), or longer-term (F(1,82) = 0.997, P = 0.321) outcomes. In the second sample using the AGLS in combination with a traditional approach was associated with significantly better short-term post-test scores (F(2,174) = 5.98, P = 0.003) than using the AGLS alone, but demonstrated no effect for long-term OSCE scores. These results suggest an embodied learning experience alone does not appear to be advantageous to student learning, but when combined with other methods for studying anatomy there are learning gains.  相似文献   

4.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

5.
Many medical schools practice commemorative ceremonies to honor body donors. Attitudes of medical education stakeholders toward these ceremonies have not yet been fully investigated. The aim of this study was to explore anatomy students' attitudes toward commemorations at a multicultural institution which has not introduced these ceremonies yet. A survey was carried out on different groups of anatomy students that were exposed and not yet exposed to human remains. The survey was used to record basic demographic data from the respondents, ask if they would support the establishment of an anatomy commemoration and in which format. A total of 756 anatomy students participated in the survey (response rate 69.8%). The majority (76.3%) were in favor of introducing a commemoration for donors. The associations of students' gender, attitude toward body donation, and level of exposure to human remains with attitudes toward commemoration for donors were identified (P < 0.05), whereas ethnicity and religion seemed to have no influence on attitudes (P > 0.05). Most students believed that anatomy staff and students should organize the commemoration. There was a preference for the commemoration to be secular with revealed identities of donors, and not recorded for social media. The support for the establishment of commemorations transcended cultural and religious differences and confirmed students' respectful attitude toward donors. Anatomy commemorations seem to have potential not only to engage students with one another, and donor families, but also to pave the way for students to become life-long ethical and empathetic learners and practitioners.  相似文献   

6.
The synthetic cadaver is a high-fidelity model intended to replace or supplement other anatomy learning modalities. Academic attainment and student perceptions were examined in an undergraduate human anatomy course using a combination of plastic models and synthetic cadavers to learn lower body anatomy (“Experimental group”), compared to a Historical group who used only plastic models. Grades on an upper body test, for which both groups used only plastic models, were compared to ensure that no academic differences existed between groups (P = 0.7653). Students in the Experimental group performed better on the lower body test for which they used both plastic models and synthetic cadavers (median = 73.8% (95% CI: 72.0%-75.0%) compared to the Historical group (70.1% (95% CI: 68.3%-70.7%), P < 0.0001); however, less than half of students (49%) attributed this to the synthetic cadavers. Students' perception of laboratory resources (P < 0.0001) and learning experience (P < 0.0001) both improved with the addition of synthetic cadavers compared to using only plastic models, and 60% of students in the Experimental group agreed that the synthetic cadavers would be a key reason that they would choose that institution for undergraduate studies. This investigation showed improved student grades when plastic models and synthetic cadavers were combined, in addition to improved student perceptions of the learning experience. Results of the student questionnaires also suggested that although synthetic cadavers carry a notable up-front cost, they may be a useful recruitment tool for institutions.  相似文献   

7.
Attrition of anatomy knowledge has been an area of concern in health professions curricula. To ensure safe and effective clinical practice, the study of chiropractic requires a good knowledge of musculoskeletal anatomy. In this study, musculoskeletal limb knowledge retention was investigated among students in the 5-year chiropractic program at Macquarie University, Australia. A test of 20 multiple-choice questions, categorized into low-order (LO) and high-order (HO) cognitive ability according to Bloom’s Taxonomy, was developed. Students enrolled in the program were invited to participate with 257 of the 387 choosing to participate, (response rate ranging 56%–72% per year level). No attrition of knowledge across the years was observed, instead, a significant increase in knowledge, measured by total LO and HO scores (P < 0.0005), throughout the program. There were significant increases in both low and high cognitive scores which were not uniform, with high-order scores increasing significantly in the last two year levels. The increase of knowledge, may be explained, at least partially, by the vertical and horizontal integrated curriculum. Retrieval of knowledge, especially in clinically applied formats, may have led to an enhanced ability to apply anatomy knowledge and account for the increased scores in the high-order knowledge seen in the later clinical years. Evaluating anatomy knowledge retention at different cognitive levels seems to provide a better assessment and is worth considering in future anatomy educational research.  相似文献   

8.
The Covid-19 pandemic has challenged medical educators internationally to confront the challenges of adapting their present educational activities to a rapidly evolving digital world. In this article, the authors use anatomy education as proxy to reflect on and remap the past, present, and future of medical education in the face of these disruptions. Inspired by the historical Theatrum Anatomicum (Anatomy 1.0), the authors argue replacing current anatomy dissection laboratory (Anatomy 2.0) with a prototype anatomy studio (Anatomy 3.0). In this studio, anatomists are web-performers who not only collaborate with other foundational science educators to devise meaningful and interactive content but who also partner with actors, directors, web-designers, computer engineers, information technologists, and visual artists to master online interactions and processes in order to optimize students' engagement and learning. This anatomy studio also offers students opportunities to create their own online content and thus reposition themselves digitally, a step into developing a new competency of stage presence within medical education. So restructured, Anatomy 3.0 will prepare students with the skills to navigate an emergent era of tele and digital medicine as well as help to foreshadow forthcoming changes in medical education.  相似文献   

9.
Comics are powerful visual messages that convey immediate visceral meaning in ways that conventional texts often cannot. This article's authors created comic strips to teach anatomy more interestingly and effectively. Four-frame comic strips were conceptualized from a set of anatomy-related humorous stories gathered from the authors' collective imagination. The comics were drawn on paper and then recreated with digital graphics software. More than 500 comic strips have been drawn and labeled in Korean language, and some of them have been translated into English. All comic strips can be viewed on the Department of Anatomy homepage at the Ajou University School of Medicine, Suwon, Republic of Korea. The comic strips were written and drawn by experienced anatomists, and responses from viewers have generally been favorable. These anatomy comic strips, designed to help students learn the complexities of anatomy in a straightforward and humorous way, are expected to be improved further by the authors and other interested anatomists.  相似文献   

10.
Lincoln Memorial University‐DeBusk College of Osteopathic Medicine (LMU‐DCOM) offers an optional three‐week summer Anatomy Boot Camp course (ABC) to facilitate students' transition into medical school and promote retention of anatomy subject matter. The pre‐matriculation program is a supplemental instruction course that utilizes a small group learning format. Boot camp instruction is led by teaching assistants and two anatomy professors. Enrollees gain early exposure to Medical Gross Anatomy (MGA) course subject matter, which is taught in the fall semester, and learn study skills necessary to excel in medical school. No grade is assigned for the course, therefore participants can study without the fear of potentially affecting grades. This study evaluates the effectiveness of the LMU‐DCOM ABC course using data from four consecutive summers. Independent two‐sample t‐tests were used to compare ABC to non‐ABC students for the following variables: incoming grade point average (GPA) and Medical College Admission Test® (MCAT®) scores, MGA written and laboratory practical examination grades, and final MGA course grade. Additionally, a 26‐question survey was administered to 2012–2014 boot camp participants. There were no significant differences in incoming GPA and MCAT scores. However, boot campers scored significantly higher on the first two lecture and laboratory examinations (P < 0.05) for each year of the study. Thereafter scores varied less, suggesting a faster head start for boot camp participants. Mean MGA final grade was on average 3% higher for the boot camp cohort. The survey feedback supports that the ABC course assists with the academic and social transition into medical school. Anat Sci Educ 10: 215–223. © 2016 American Association of Anatomists.  相似文献   

11.
This viewpoint commentary, written from the perspective of a teacher who has helped to educate students in a wide variety of educational environments, is a reaction to the article published in Anatomical Sciences Education on developing of core syllabuses for the anatomical sciences. After reflecting on the definitions of both curriculum and syllabus and their importance as roadmaps for effective instruction, the value of core knowledge and core syllabuses in anatomical sciences was explored. Encouragement for the pursuit of the project proposed in the original article was provided; however, the reminder to not allow any curriculum or syllabus to prevent instructional flexibility was emphasized. Several constructive questions (regarding democracy in curriculum development, the proposed rating scale, and the desirability of reaching local or national consensus before seeking global agreement) were advanced for consideration. Anat Sci Educ 7 326–328. © 2014 American Association of Anatomists.  相似文献   

12.
It is argued in this article that the human body both in health and disease cannot be fully understood without adequately accounting for the different levels of human variation. The article focuses on variation due to ancestry, arguing that the inclusion of information pertaining to ancestry in human anatomy teaching materials and courses should be carried out and implemented with care and in line with latest developments in biological anthropology and related sciences. This seems to be of particular importance in the education of health professionals, as recent research suggests that better knowledge of human variation can improve clinical skills. It is also argued that relatively small curricular changes relating to the teaching of human variation can produce significant educational gains.  相似文献   

13.
Morehouse School of Medicine chose to restructure its first year medical curriculum in 2005. The anatomy faculty had prior experience in integrating courses, stemming from the successful integration of individual anatomical sciences courses into a single course called Human Morphology. The integration process was expanded to include the other first year basic science courses (Biochemistry, Physiology, and Neurobiology) as we progressed toward an integrated curriculum. A team, consisting of the course directors, a curriculum coordinator, and the Associate Dean for Educational and Faculty Affairs, was assembled to build the new curriculum. For the initial phase, the original course titles were retained but the lecture order was reorganized around the Human Morphology topic sequence. The material from all four courses was organized into four sequential units. Other curricular changes included placing laboratories and lectures more consistently in the daily routine, reducing lecture time from 120 to 90 minute blocks, eliminating unnecessary duplication of content, and increasing the amount of independent study time. Examinations were constructed to include questions from all courses on a single test, reducing the number of examination days in each block from three to one. The entire restructuring process took two years to complete, and the revised curriculum was implemented for the students entering in 2007. The outcomes of the restructured curriculum include a reduction in the number of contact hours by 28%, higher or equivalent subject examination average scores, enhanced student satisfaction, and a first year curriculum team better prepared to move forward with future integration.  相似文献   

14.
Anatomy education forms the foundation of a successful medical education. This has necessitated the development of innovative ideas to meet up with current realities. Despite these innovative ideas, there are challenges facing anatomy education, especially in sub-Saharan Africa. Problems such as inadequate teaching experts and outdated curricula have made anatomy education in sub-Saharan Africa uninviting and disinteresting. Several interventions have been suggested, such as the procurement of teaching tools and upgrading of teaching infrastructure. However, in this age of information technology; anatomy education, especially in sub-Saharan Africa could benefit from the integration of electronic tools and resources. This article explores the electronic tools and resources such as three-dimensional printing, educational games, and short videos that are readily available for the teaching of anatomy in sub-Saharan Africa. The author concludes by discussing how these electronic tools and resources can be used to address many of the challenges facing anatomy education in sub-Saharan Africa.  相似文献   

15.
Integration of medical imaging into preclinical anatomy courses is already underway in many medical schools. However, interpretation of two-dimensional grayscale images is difficult and conventional volume rendering techniques provide only images of limited quality. In this regard, a more photorealistic visualization provided by Cinematic Rendering (CR) may be more suitable for anatomical education. A randomized, two-period crossover study was conducted from July to December 2018, at the University Hospital of Erlangen, Germany to compare CR and conventional computed tomography (CT) imaging for speed and comprehension of anatomy. Sixteen students were randomized into two assessment sequences. During each assessment period, participants had to answer 15 anatomy-related questions that were divided into three categories: parenchymal, musculoskeletal, and vascular anatomy. After a washout period of 14 days, assessments were crossed over to the respective second reconstruction technique. The mean interperiod differences for the time to answer differed significantly between the CR–CT sequence (−204.21 ± 156.0 seconds) and the CT–CR sequence (243.33 ± 113.83 seconds; P < 0.001). Overall time reduction by CR was 65.56%. Cinematic Rendering visualization of musculoskeletal and vascular anatomy was higher rated compared to CT visualization (P < 0.001 and P = 0.003), whereas CT visualization of parenchymal anatomy received a higher scoring than CR visualization (P < 0.001). No carryover effects were observed. A questionnaire revealed that students consider CR to be beneficial for medical education. These results suggest that CR has a potential to enhance knowledge acquisition and transfer from medical imaging data in medical education.  相似文献   

16.
Medical schools are increasingly integrating professionalism training into their gross anatomy courses, teaching ethical behavior and humanistic attitudes through the dissection experience. However, many schools continue to take a traditional, technical approach to anatomical education while teaching professionalism in separate courses. This interview-based study explored how students viewed the body donor and the professional lessons they learned through dissection at one such medical school. All students oscillated involuntarily between seeing the cadaver as a specimen for learning and seeing the cadaver as a person, with some students intentionally cultivating one of these ways of seeing over the other. These views shaped students’ emotional and moral responses to the experiences of dissection. The “specimen” view facilitated a technical, detached approach to dissection, while the “person” view made students engage emotionally. Further, students who intentionally cultivated a “specimen” view generally felt less moral distress about dissection than students who intentionally cultivated a “person” view. The concept of respect gave students permission to perform dissections, but “person-minded” students developed more complex rules around what constituted respectful behavior. Both groups of students connected the gross anatomy experience to their professional development, but in different ways. “Specimen-minded” students intentionally objectified the body to learn the emotional control physicians need, while “person-minded” students humanized the body donor to promote the emotional engagement required of physicians. These findings support efforts to integrate professionalism teaching into gross anatomy courses, particularly content, addressing the balance between professional detachment and concern.  相似文献   

17.
Student struggles in gross anatomy coursework at the professional level can result in hours of remediation along with a need to allot time and other resources by both the student and the faculty. Since this course typically occurs in the first semester of the first year, programs can turn to admissions data to try to determine which of these students may struggle. This study looked at two years of medical (n = 280) and dental (n = 78) students to determine if there is a relationship between pre-admissions anatomy coursework and performance in gross anatomy at the professional school level. Students provided data regarding their past anatomy coursework and final grades in professional school gross anatomy courses were obtained. In addition, students responded to questions regarding their feelings of preparation and how they valued the prior anatomy coursework as it related to the professional course. Statistical analysis showed no difference in final course grade between students with and without prior anatomy in either program. Counter to the numerical data, 96.6% of the students in the study recommended an anatomy course prior to pursuing a health science degree. The primary reasons given for this recommendation were the benefits of repeated content exposure, knowledge of the anatomy terminology, and decreased stress regarding the course. The results from this study suggest that the benefits of prior anatomy may be seen more in the students’ stress and quality of life rather in the numerical performance of course grades.  相似文献   

18.
The presentation of pre-sliced specimens is a frequently used method in the laboratory teaching of cross-sectional anatomy. In the present study, a new teaching method based on a hands-on slicing activity was introduced into the teaching of brain, heart, and liver cross-sectional anatomy. A randomized, controlled trial was performed. A total of 182 third-year medical students were randomized into a control group taught with the prosection mode (pre-sliced organ viewing) and an experimental group taught with the dissection mode (hands-on organ slicing). These teaching methods were assessed by testing the students' knowledge of cross-sectional specimens and cross-sectional radiological images, and analyzing students' feedback. Using a specimen test on three organs (brain, heart, and liver), significant differences were observed in the mean scores of the control and experimental groups: for brain 59.6% (±14.2) vs. 70.1% (±15.5), (P < 0.001, Cohen's d = 0.17); for heart: 57.6% (±12.5) vs. 75.6% (±15.3), (P < 0.001, d = 0.30); and for liver: 60.4% (±14.5) vs. 81.7% (±14.2), (P < 0.001, d = 0.46). In a cross-sectional radiological image test, better performance was also found in the experimental group (P < 0.001). The mean scores of the control vs. experimental groups were as follows: for brain imaging 63.9% (±15.1) vs. 71.1% (±16.1); for heart imaging 64.7% (±14.5) vs. 75.2% (±15.5); and for liver imaging 61.1% (±15.5) vs. 81.2% (±14.6), respectively. The effect sizes (Cohen's d) were 0.05, 0.23, and 0.52, respectively. Students in the lower tertile benefited the most from the slicing experiences. Students' feedback was generally positive. Hands-on slicing activity can increase the effectiveness of anatomy teaching and increase students' ability to interpret radiological images.  相似文献   

19.
Hand-held devices have revolutionized communication and education in the last decade. Consequently, mobile learning (m-learning) has become popular among medical students. Nevertheless, there are relatively few studies assessing students' learning outcomes using m-learning devices. This observational study presents an anatomy m-learning tool (eMed-App), an application developed to accompany an anatomy seminar and support medical students' self-directed learning of the skeletal system. Questionnaire data describe where, how frequently, and why students used the app. Multiple choice examination results were analyzed to evaluate whether usage of the app had an effect on test scores. The eMed-App application was used by 77.5% of the students, mainly accessed by Android smartphones, and at students' homes (62.2%) in order to prepare themselves for seminar sessions (60.8%), or to review learning content (67%). Most commonly, students logged on for less than 15 minutes each time (67.8%). Frequent app users showed better test results on items covering eMed-App learning content. In addition, users also achieved better results on items that were not related to the content of the app and, thus, gained better overall test results and lower failure rates. The top quartile of test performers used the eMed-App more frequently compared to students in lower quartiles. This study demonstrated that many students, especially the high-performing ones, made use of the eMed-App. However, the app itself did not result in better outcomes, suggesting that top students might have been more motivated to use the app than students who were generally weak in anatomy.  相似文献   

20.
This study evaluates a cooperative learning approach for teaching anatomy to health science students incorporating small group and peer instruction based on the jigsaw method first described in the 1970's. Fifty-three volunteers participated in abdominal anatomy workshops. Students were given time to become an “expert” in one of four segments of the topic (sub-topics) by allocating groups to work-stations with learning resources: axial computerized tomography (CT) of abdominal structures, axial CT of abdominal blood vessels, angiograms and venograms of abdominal blood vessels and structures located within abdominal quadrants. In the second part of workshop, students were redistributed into “jigsaw” learning groups with at least one “expert” at each workstation. The “jigsaw” learning groups then circulated between workstations learning all sub-topics with the “expert” teaching others in their group. To assess abdominal anatomy knowledge, students completed a quiz pre- and post- workshop. Students increased their knowledge with significant improvements in quiz scores irrespective of prior exposure to lectures or practical classes related to the workshop topic. The evidence for long-term retention of knowledge, assessed by comparing end-semester examination performance of workshop participants with workshop nonparticipants, was less convincing. Workshop participants rated the jigsaw workshop highly for both educational value and enjoyment and felt the teaching approach would improve their course performance. The jigsaw method improved anatomy knowledge in the short-term by engaging students in group work and peer-led learning, with minimal supervision required. Reported outcomes suggest that cooperative learning approaches can lead to gains in student performance and motivation to learn. Anat Sci Educ 00: 000–000. © 2018 American Association of Anatomists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号