首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anatomy is a key knowledge area in chiropractic and is formally offered in the undergraduate component of chiropractic education. There is the potential for loss of anatomy knowledge before the opportunity to apply it in a clinical setting. This study aimed to determine whether chiropractic clinicians retain a level of anatomy knowledge comparable to that of chiropractic students and to compare chiropractors' self-rating of their anatomical knowledge against an objective knowledge assessment tool. A previously validated multiple-choice test was utilized to measure retention of limb musculoskeletal (MSK) knowledge in Australian chiropractors. One hundred and one registered chiropractors completed the questionnaire and responses were scored, analyzed, and compared to scores attained by undergraduate and postgraduate chiropractic students who had previously completed the same questionnaire. The results indicated that practitioners retained their anatomy knowledge, with a significantly higher total mean score than the undergraduate group [total mean score = 36.5% (±SD 13.6%); P < 0.01] but not significantly different to the postgraduate group [total mean score = 52.2% (±SD 14.1%); P = 0.74]. There was a weak positive correlation between chiropractors' self-rated knowledge and test performance scores indicating the effectiveness of this Australian chiropractic group in self-assessing their anatomy knowledge. This study found that Australian chiropractors' knowledge of MSK anatomy was retained during the transition from university to clinical practice and they accurately evaluated their own test performance.  相似文献   

2.
Human anatomy knowledge is a core requirement for all health care clinicians. There is a paucity of information relating to anatomy content and delivery in Australian chiropractic programs. The aim of this study was to describe anatomy teaching in Australian chiropractic programs, utilizing a survey which was distributed to all four programs, requesting information on: anatomy program structure, delivery methods, assessment, teaching resources, and academic staff profile at their institution. The survey was undertaken in 2016 and documented practices in that academic year. All four institutions responded. There was a reported difference in the teaching hours, content, delivery and assessment of anatomy utilized in Australian chiropractic programs. Anatomy was compulsory at all four institutions with the mean total of 214 (SD ± 100.2) teaching hours. Teaching was undertaken by permanent ongoing (30%) and sessional academic staff, and student to teacher ratio varied from 15:1 to 12:1. A variety of teaching resources were utilized, including human tissue access, either as prosected cadavers or plastinated body parts. The results of this survey confirm that anatomy has an established place in chiropractic education programs in Australia and while curricular variations exist, all programs had similar course design, delivery, and assessment methods. This study confirmed the provision of a strong foundation in topographical anatomy and neuroanatomy, while other anatomical sciences, such as histology and embryology were not consistently delivered. Formalization of a core anatomy curriculum together with competency standards is needed to assist program evaluation and development, and for accreditation purposes.  相似文献   

3.
This study examines the long-term retention of anatomical knowledge from 180 students after various repetition activities. The retention of anatomical knowledge was assessed by multiple-choice tests at five different points in time: before and after a course in Functional Anatomy, before and after repetition activities that occurred 14 weeks after this course, and 28 weeks after this course to establish long-term retention. Students were divided into five groups: one without any repetition activity, one with a restricted repetition activity (the multiple-choice test), and three groups that were offered repetition activities (traditional lecture, e-learning module, and small group work in the dissection room). During all three repetition activities the same information was conveyed, and this content was not revisited in other courses for the duration of the study. The results showed that students who did not engage in a repetition activity scored significantly lower on the long-term retention test compared to all other groups (ANCOVA: P = 0.0001). Pair-wise comparison with estimated means showed that the other four groups, regardless of the type of repeating activity, did not differ in the amount of knowledge they retained during any of the five assessments (P = 0.008, P = 0.0001, P = 0.001, and P = 0.0001, respectively). This study suggests that the type of repetition activity has no effect on knowledge retention both immediately following the activity and in the long term. It is concluded that the repetition of anatomical knowledge in any form is beneficial for students and will likely improve student outcomes in a curriculum that builds on prior knowledge.  相似文献   

4.
The presentation of pre-sliced specimens is a frequently used method in the laboratory teaching of cross-sectional anatomy. In the present study, a new teaching method based on a hands-on slicing activity was introduced into the teaching of brain, heart, and liver cross-sectional anatomy. A randomized, controlled trial was performed. A total of 182 third-year medical students were randomized into a control group taught with the prosection mode (pre-sliced organ viewing) and an experimental group taught with the dissection mode (hands-on organ slicing). These teaching methods were assessed by testing the students' knowledge of cross-sectional specimens and cross-sectional radiological images, and analyzing students' feedback. Using a specimen test on three organs (brain, heart, and liver), significant differences were observed in the mean scores of the control and experimental groups: for brain 59.6% (±14.2) vs. 70.1% (±15.5), (P < 0.001, Cohen's d = 0.17); for heart: 57.6% (±12.5) vs. 75.6% (±15.3), (P < 0.001, d = 0.30); and for liver: 60.4% (±14.5) vs. 81.7% (±14.2), (P < 0.001, d = 0.46). In a cross-sectional radiological image test, better performance was also found in the experimental group (P < 0.001). The mean scores of the control vs. experimental groups were as follows: for brain imaging 63.9% (±15.1) vs. 71.1% (±16.1); for heart imaging 64.7% (±14.5) vs. 75.2% (±15.5); and for liver imaging 61.1% (±15.5) vs. 81.2% (±14.6), respectively. The effect sizes (Cohen's d) were 0.05, 0.23, and 0.52, respectively. Students in the lower tertile benefited the most from the slicing experiences. Students' feedback was generally positive. Hands-on slicing activity can increase the effectiveness of anatomy teaching and increase students' ability to interpret radiological images.  相似文献   

5.
In order to improve learning efficiency and memory retention in medical teaching, furthering active learning seems to be an effective alternative to classical teaching. One option to make active exploration of the subject matter possible is the use of virtual reality (VR) technology. The authors developed an immersive anatomy atlas which allows users to explore human anatomical structures interactively through virtual dissection. Thirty-two senior-class students from two German high schools with no prior formal medical training were separated into two groups and tasked with answering an anatomical questionnaire. One group used traditional anatomical textbooks and the other used the immersive virtual reality atlas. The time needed to answer the questions was measured. Several weeks later, the participants answered a similar questionnaire with different anatomical questions in order to test memory retention. The VR group took significantly less time to answer the questionnaire, and participants from the VR group had significantly better results over both tests. Based on the results of this study, VR learning seems to be more efficient and to have better long-term effects for the study of anatomy. The reason for that could lie in the VR environment's high immersion, and the possibility to freely and interactively explore a realistic representation of human anatomy. Immersive VR technology offers many possibilities for medical teaching and training, especially as a support for cadaver dissection courses.  相似文献   

6.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

7.
Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science‐dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of a course wherein the primary learning and teaching objective is to integrate basic science anatomy knowledge with clinical education. The course was developed through collaboration by a multi‐specialist course development team (composed of both basic scientists and physicians) and was founded in current adult learning theories. The course was designed to be widely applicable to multiple future specialties, using current published reports regarding the topics and clinical care areas relying heavily on anatomical knowledge regardless of specialist focus. To this end, the course focuses on the role of anatomy in the diagnosis and treatment of frequently encountered musculoskeletal conditions. Our iterative implementation and action research approach to this course development has yielded a curricular template for anatomy integration into clinical years. Key components for successful implementation of these types of courses, including content topic sequence, the faculty development team, learning approaches, and hidden curricula, were developed. We also report preliminary feedback from course stakeholders and lessons learned through the process. The purpose of this report is to enhance the current literature regarding basic science integration in the clinical years of medical school. Anat Sci Educ 7: 379–388. © 2014 American Association of Anatomists.  相似文献   

8.
Medical students' motivation and study strategies are crucial in determining academic performance. This study aimed to assess the motivation and learning strategies of medical students as well as their association with performance in anatomy examinations. The Motivated Strategies for Learning Questionnaire, two focus group discussions, and students' current anatomy cumulative grade point average (cGPA) were used. Generally, the medical students strongly felt that anatomy is fundamental to the practice of medicine and surgery. This result was consistent with high task value scores of 5.99 ± 1.25. They were also driven by extrinsic goal orientation (5.59 ± 1.42) and intrinsic goal orientation (5.08 ± 1.26). Most medical students typically relied on elaboration (5.35 ± 1.25) ahead of other cognitive strategies namely rehearsal (5.30 ± 1.11), organization (5.15 ± 1.34), and lowest-rated critical thinking (4.77 ± 1.19). The students also relied on resource management strategies, effort regulation (5.15 ± 1.20) and time and study environment regulation (5.03 ± 1.03) more than the moderately scored peer learning (4.95 ± 1.50) and help-seeking (4.95 ± 1.09). In the focus group discussions, students reported that they often narrate or explain to each other what they would have read and understood from anatomy lectures, tutorials, and textbooks. They also bemoaned the lack of institutional support for stress burdens. The motivation and learning strategies subscales were not correlated with anatomy cGPA. Males were driven by extrinsic goals and experienced significantly higher levels of test anxiety than females (P < 0.05). Knowing the motivation and learning strategies students employ early in the medical curriculum can be leveraged to promote self-directed learning and academic achievement.  相似文献   

9.
The Covid-19 pandemic has challenged medical educators internationally to confront the challenges of adapting their present educational activities to a rapidly evolving digital world. In this article, the authors use anatomy education as proxy to reflect on and remap the past, present, and future of medical education in the face of these disruptions. Inspired by the historical Theatrum Anatomicum (Anatomy 1.0), the authors argue replacing current anatomy dissection laboratory (Anatomy 2.0) with a prototype anatomy studio (Anatomy 3.0). In this studio, anatomists are web-performers who not only collaborate with other foundational science educators to devise meaningful and interactive content but who also partner with actors, directors, web-designers, computer engineers, information technologists, and visual artists to master online interactions and processes in order to optimize students' engagement and learning. This anatomy studio also offers students opportunities to create their own online content and thus reposition themselves digitally, a step into developing a new competency of stage presence within medical education. So restructured, Anatomy 3.0 will prepare students with the skills to navigate an emergent era of tele and digital medicine as well as help to foreshadow forthcoming changes in medical education.  相似文献   

10.
Medical schools are increasingly integrating professionalism training into their gross anatomy courses, teaching ethical behavior and humanistic attitudes through the dissection experience. However, many schools continue to take a traditional, technical approach to anatomical education while teaching professionalism in separate courses. This interview-based study explored how students viewed the body donor and the professional lessons they learned through dissection at one such medical school. All students oscillated involuntarily between seeing the cadaver as a specimen for learning and seeing the cadaver as a person, with some students intentionally cultivating one of these ways of seeing over the other. These views shaped students’ emotional and moral responses to the experiences of dissection. The “specimen” view facilitated a technical, detached approach to dissection, while the “person” view made students engage emotionally. Further, students who intentionally cultivated a “specimen” view generally felt less moral distress about dissection than students who intentionally cultivated a “person” view. The concept of respect gave students permission to perform dissections, but “person-minded” students developed more complex rules around what constituted respectful behavior. Both groups of students connected the gross anatomy experience to their professional development, but in different ways. “Specimen-minded” students intentionally objectified the body to learn the emotional control physicians need, while “person-minded” students humanized the body donor to promote the emotional engagement required of physicians. These findings support efforts to integrate professionalism teaching into gross anatomy courses, particularly content, addressing the balance between professional detachment and concern.  相似文献   

11.
Anatomical education in the United Kingdom (UK) and Ireland has long been under scrutiny, especially since the reforms triggered in 1993 by the General Medical Council's “Tomorrow's Doctors.” The aim of the current study was to investigate the state of medical student anatomy education in the UK and Ireland in 2019. In all, 39 medical schools completed the survey (100% response rate) and trained 10,093 medical students per year cohort. The teachers comprised 760 individuals, of these 143 were employed on full-time teaching contracts and 103 were employed on education and research contracts. Since a previous survey in 1999, the number of part-time staff has increased by 300%, including a significant increase in the number of anatomy demonstrators. In 2019, anatomy was predominantly taught to medical students in either a system-based or hybrid curriculum. In all, 34 medical schools (87%) used human cadavers to teach anatomy, with a total of 1,363 donors being used per annum. Gross anatomy teaching was integrated with medical imaging in 95% of medical schools, embryology in 81%, living anatomy in 78%, neuroanatomy in 73%, and histology in 68.3%. Throughout their five years of study, medical students are allocated on average 85 h of taught time for gross anatomy, 24 h for neuroanatomy, 24 h for histology, 11 h for living anatomy, and 10 for embryology. In the past 20 years, there has been an average loss of 39 h dedicated to gross anatomy teaching and a reduction in time dedicated to all other anatomy sub-disciplines.  相似文献   

12.
Best-practice guidelines have incorporated ultrasound in diagnostic and procedural medicine. Due to this demand, the Arizona College of Osteopathic Medicine initiated a comprehensive integration of ultrasound into its first-year anatomy course attended by more than 280 students. Ultrasound workshops were developed to enhance student conceptualization of musculoskeletal (MSK) anatomy through visualizing clinically important anatomical relationships, a simulated lumbar puncture during the back unit, carpal tunnel and shoulder evaluations during the upper limb unit, and plantar fascia, calcaneal tendon, and tarsal tunnel evaluations during the lower limb unit. A 5-point Likert scale survey evaluated if ultrasound improved students' self-perceived anatomical and clinical comprehension of relevant anatomy, improved students' ability to orient to ultrasound imagery, and prompted further independent investigation of the anatomical area. Ultrasound examination questions were added to the anatomy examinations. Two-tailed one-sample t-tests for the back, upper limb, and lower limb units were found to be significant across all Likert survey categories (P < 0.001). Positive student responses to the Likert survey in conjunction with examination question average of 84.3% (±10.3) demonstrated that the ultrasound workshops are beneficial to student education. Ultrasound enhances medical students' clinical and anatomical comprehension and ability to orient to ultrasound imagery for MSK anatomy. This study supports early ultrasound education as a mechanism to encourage students' independent learning as evidenced by many undertaking voluntary investigation of clinical concerns associated with MSK anatomy. This study establishes the successful integration of MSK ultrasound into a large medical school program and its benefit to student clinical education.  相似文献   

13.
As curricular emphasis on anatomy in undergraduate medical education continues to evolve, new approaches to anatomical education are urgently needed to prepare medical students for residency. A surgical anatomy class was designed for third- and fourth-year medical students to explore important anatomical relationships by performing realistic surgical procedures on anatomical donors. Under the guidance of both surgeons and anatomists, students in this month-long elective course explored key anatomical relationships through performing surgical approaches, with the secondary benefit of practicing basic surgical techniques. Procedures, such as left nephrectomy, first rib resection for thoracic outlet syndrome, and carotid endarterectomy, were adapted from those used clinically by multiple surgical subspecialties. This viewpoint commentary highlights perspectives from students and instructors that suggest the value of a surgical approach to anatomical education for medical students preparing for procedure-oriented residencies, with the goals of: (1) describing the elective at the authors' institution, (2) promoting similar efforts across different institutions, and (3) encouraging future qualitative and quantitative studies of similar pedagogic efforts.  相似文献   

14.
Anatomical examinations have been designed to assess topographical and/or applied knowledge of anatomy with or without the inclusion of visual resources such as cadaveric specimens or images, radiological images, and/or clinical photographs. Multimedia learning theories have advanced the understanding of how words and images are processed during learning. However, the evidence of the impact of including anatomical and radiological images within written assessments is sparse. This study investigates the impact of including images within clinically oriented single-best-answer questions on students' scores in a tailored online tool. Second-year medical students (n = 174) from six schools in the United Kingdom participated voluntarily in the examination, and 55 students provided free-text comments which were thematically analyzed. All questions were categorized as to whether their stimulus format was purely textual or included an associated image. The type (anatomical and radiological image) and deep structure of images (question referring to a bone or soft tissue on the image) were taken into consideration. Students scored significantly better on questions with images compared to questions without images (P < 0.001), and on questions referring to bones than to soft tissue (P < 0.001), but no difference was found in their performance on anatomical and radiological image questions. The coding highlighted areas of “test applicability” and “challenges faced by the students.” In conclusion, images are critical in medical practice for investigating a patient's anatomy, and this study sets out a way to understand the effects of images on students' performance and their views in commonly employed written assessments.  相似文献   

15.
Integration of medical imaging into preclinical anatomy courses is already underway in many medical schools. However, interpretation of two-dimensional grayscale images is difficult and conventional volume rendering techniques provide only images of limited quality. In this regard, a more photorealistic visualization provided by Cinematic Rendering (CR) may be more suitable for anatomical education. A randomized, two-period crossover study was conducted from July to December 2018, at the University Hospital of Erlangen, Germany to compare CR and conventional computed tomography (CT) imaging for speed and comprehension of anatomy. Sixteen students were randomized into two assessment sequences. During each assessment period, participants had to answer 15 anatomy-related questions that were divided into three categories: parenchymal, musculoskeletal, and vascular anatomy. After a washout period of 14 days, assessments were crossed over to the respective second reconstruction technique. The mean interperiod differences for the time to answer differed significantly between the CR–CT sequence (−204.21 ± 156.0 seconds) and the CT–CR sequence (243.33 ± 113.83 seconds; P < 0.001). Overall time reduction by CR was 65.56%. Cinematic Rendering visualization of musculoskeletal and vascular anatomy was higher rated compared to CT visualization (P < 0.001 and P = 0.003), whereas CT visualization of parenchymal anatomy received a higher scoring than CR visualization (P < 0.001). No carryover effects were observed. A questionnaire revealed that students consider CR to be beneficial for medical education. These results suggest that CR has a potential to enhance knowledge acquisition and transfer from medical imaging data in medical education.  相似文献   

16.
Morehouse School of Medicine chose to restructure its first year medical curriculum in 2005. The anatomy faculty had prior experience in integrating courses, stemming from the successful integration of individual anatomical sciences courses into a single course called Human Morphology. The integration process was expanded to include the other first year basic science courses (Biochemistry, Physiology, and Neurobiology) as we progressed toward an integrated curriculum. A team, consisting of the course directors, a curriculum coordinator, and the Associate Dean for Educational and Faculty Affairs, was assembled to build the new curriculum. For the initial phase, the original course titles were retained but the lecture order was reorganized around the Human Morphology topic sequence. The material from all four courses was organized into four sequential units. Other curricular changes included placing laboratories and lectures more consistently in the daily routine, reducing lecture time from 120 to 90 minute blocks, eliminating unnecessary duplication of content, and increasing the amount of independent study time. Examinations were constructed to include questions from all courses on a single test, reducing the number of examination days in each block from three to one. The entire restructuring process took two years to complete, and the revised curriculum was implemented for the students entering in 2007. The outcomes of the restructured curriculum include a reduction in the number of contact hours by 28%, higher or equivalent subject examination average scores, enhanced student satisfaction, and a first year curriculum team better prepared to move forward with future integration.  相似文献   

17.
Many medical schools practice commemorative ceremonies to honor body donors. Attitudes of medical education stakeholders toward these ceremonies have not yet been fully investigated. The aim of this study was to explore anatomy students' attitudes toward commemorations at a multicultural institution which has not introduced these ceremonies yet. A survey was carried out on different groups of anatomy students that were exposed and not yet exposed to human remains. The survey was used to record basic demographic data from the respondents, ask if they would support the establishment of an anatomy commemoration and in which format. A total of 756 anatomy students participated in the survey (response rate 69.8%). The majority (76.3%) were in favor of introducing a commemoration for donors. The associations of students' gender, attitude toward body donation, and level of exposure to human remains with attitudes toward commemoration for donors were identified (P < 0.05), whereas ethnicity and religion seemed to have no influence on attitudes (P > 0.05). Most students believed that anatomy staff and students should organize the commemoration. There was a preference for the commemoration to be secular with revealed identities of donors, and not recorded for social media. The support for the establishment of commemorations transcended cultural and religious differences and confirmed students' respectful attitude toward donors. Anatomy commemorations seem to have potential not only to engage students with one another, and donor families, but also to pave the way for students to become life-long ethical and empathetic learners and practitioners.  相似文献   

18.
The anatomy curriculum at Namibia's first, and currently only, medical school is clinically oriented, outcome-based, and includes all of the components of modern anatomical sciences i.e., histology, embryology, neuroanatomy, gross, and clinical anatomy. The design of the facilities and the equipment incorporated into these facilities were directed toward simplification of work flow and ease of use by faculty, staff, and students. From the onset, the integration of state of the art technology was pursued to facilitate teaching and promote a student-centered pedagogical approach to dissections. The program, as realized, is comprised of three 16-week semesters with seven hours of contact time per week, namely three hours of lectures and four hours of dissection laboratory and microscopy time. Set outcomes were established, each revolving around clinical cases with integrated medical imaging. The design of the facility itself was not constrained by a legacy structure, allowing the School of Medicine, in collaboration with architects and contractors, to design the building from scratch. A design was implemented that allows for the sequential processing of cadaveric material in a unidirectional flow from reception, to preparation, embalming, storage, dissection, and maceration. Importantly, the odor of formaldehyde typically associated with anatomy facilities was eliminated outside of the dissection areas and minimized within via a high-performance ventilation system. By holistically incorporating an integrated curriculum, facility design, and teaching at an early stage, the authors believe they have created a system that might serve as a model for new anatomy programs.  相似文献   

19.
The role of human dissection in modern medical curricula has been a topic of intense debate. In part, this is because dissection can be time-consuming and curricular hours are being monitored more carefully. This has led some to question the efficacy and importance of dissection as a teaching method. While this topic has received considerable attention in the literature, the question of how dissection impacts learning has been difficult to evaluate in a real-world, high-stakes setting since participation in dissection is often one of many variables. In this study, this challenge was overcome due to a change in the curriculum of a Special Master Program (SMP) that permitted a comparison between two years of students that learned anatomy using prosection only and two years of students that participated in dissection laboratories. Since each class of SMP students took courses in the medical school, and the medical school anatomy curriculum was constant, medical student performance served as a control throughout the study period. Results demonstrate that SMP students who learned through prosection had lower performance on anatomy practical and written examinations compared to medical students. When the SMP program changed and students started participating in dissection, there were measurable improvements in both practical and written examinations. These findings provide evidence of dissection’s role in learning and applying anatomy knowledge both within and outside the gross anatomy laboratory.  相似文献   

20.
Spatial abilities have been correlated to anatomy knowledge assessment and spatial training has been found to improve spatial abilities in previous systematic reviews. The objective of this systematic review was to evaluate spatial abilities training in anatomy education. A literature search was done from inception to 3 August 2017 in Scopus® and several databases on the EBSCOhost platform. Citations were reviewed and those involving anatomy education, an intervention, and a spatial abilities test were retained and the corresponding full-text articles were reviewed for inclusion. Before and after training studies, as well as comparative training programs, relating a spatial training intervention to spatial abilities were eligible. Of the 2,405 citations obtained, 52 articles were identified and reviewed, yielding eight eligible articles. Instruction in anatomy and mental rotations training were found to improve spatial abilities. For the seven studies retained for the meta-analysis that included the effect of interventions on spatial abilities test scores, the pooled treatment effect difference was 0.49 (95% CI [0.17; 0.82]; n = 11) improvement. For the two studies that included the practice effect on spatial abilities test scores in a control group, the pooled treatment effect difference was 0.47 (95% CI [−0.03; 0.97]; n = 2) improvement. In these two studies, the impact of the intervention on spatial abilities test scores was found despite the practice effect. Evidence was found for improvement of spatial abilities in anatomy education using instruction in anatomy and mental rotations training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号