首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Gyro sensor has been used to measure foot pronation during running with reliable results in previous studies, and the signals were not affected by the vibration of heel strikes. The purpose of this study was to observe the kinematic changes of the foot during intense running using a 3-axis gyro sensor. Fifteen male participants (average age: 24.5 ± 1.7 years; mean height: 174.1 ± 3.3 cm; mean body weight: 71.0 ± 5.5 kg) were recruited in this study. Foot kinematic changes were observed in 30-min intense running protocols. The comparisons of the signals from gyro and motion analysis system were also performed to determine the accuracy of the gyro and showed positive results. In the main experiment, the ankle range of motion (ROM) in the frontal plane, measured using a motion system, showed a significant increase over time. Accordingly, peak angular velocity in the frontal plane also showed a significant increase. The correlation between ankle ROM and peak angular velocity in the frontal plane is significantly high (= 0.975). Moreover, peak angular velocity in the frontal plane is also significantly correlated with both rate of perceived exertion (RPE) (= 0.911) and heart rate (= 0.960). This study concluded that an alarm system for foot kinematic changes related to running injuries can be built based on the peak angular velocity of the foot in the frontal plane.  相似文献   

2.
Electromyographic (EMG) activity of the leg muscles and the ground reaction forces were recorded in 17 elite male middle-distance runners, who performed isometric maximal voluntary contractions (MVC) as well as running at different speeds. Electromyograms were recorded from the gluteus maximus, vastus lateralis, biceps femoris, gastrocnemius and tibialis anterior. The results indicated that the averaged EMG (aEMG) activities of all the muscles studied increased (P?<?0.05) with increasing running speed, especially in the pre-contact and braking phases. At higher speeds, the aEMG activities of the gastrocnemius, vastus lateralis, biceps femoris and gluteus maximus exceeded 100% MVC in these same phases. These results suggest that maximal voluntary contractions cannot be used as an indicator of the full activation potential of human skeletal muscle. Furthermore, the present results suggest that increased pre-contact EMG potentiates the functional role of stretch reflexes, which subsequently increases tendomuscular stiffness and enhances force production in the braking and/or propulsive phases in running. Furthermore, a more powerful force production in the optimal direction for increasing running speed effectively requires increased EMG activity of the two-joint muscles (biceps femoris, rectus femoris and gastrocnemius) during the entire running cycle.  相似文献   

3.
中长跑运动员的速度训练   总被引:2,自引:0,他引:2  
速度素质对提高中长跑运动水平已越来越重要.通过对中长跑运动员速度训练具体途径与方法的分析和探讨,提出训练中应注意的问题,为提高我国中长跑运动成绩提供借鉴.  相似文献   

4.
对跨栏跑的速度和速度训练的研究   总被引:4,自引:2,他引:4  
要提高跨栏专项成绩,就必须解决好栏上的过栏速度和栏间平跑速度。其中过栏速度靠提高起跨腿蹬地速度、摆动腿动作速度、起跨腿提拉速度和下栏转为栏间跑速度,栏间乎跑速度靠提高栏间步频为主。指出平跑速度、过栏速度的重要性,并对二者提出了科学的训练方案。  相似文献   

5.
The purpose of this study was to investigate the changes in selected biomechanical variables in 80-m maximal sprint runs while imposing changes in step frequency (SF) and to investigate if these adaptations differ based on gender and training level. A total of 40 athletes (10 elite men and 10 women, 10 intermediate men and 10 women) participated in this study; they were requested to perform 5 trials at maximal running speed (RS): at the self-selected frequency (SFs) and at SF ±15% and ±30%SFs. Contact time (CT) and flight time (FT) as well as step length (SL) decreased with increasing SF, while kvert increased with it. At SFs, kleg was the lowest (a 20% decrease at ±30%SFs), while RS was the largest (a 12% decrease at ±30%SFs). Only small changes (1.5%) in maximal vertical force (Fmax) were observed as a function of SF, but maximum leg spring compression (ΔL) was largest at SFs and decreased by about 25% at ±30%SFs. Significant differences in Fmax, Δy, kleg and kvert were observed as a function of skill and gender (P < 0.001). Our results indicate that RS is optimised at SFs and that, while kvert follows the changes in SF, kleg is lowest at SFs.  相似文献   

6.
The aim of this study was to introduce a Newton-Euler inverse dynamics model that included reaction force and moment estimation at the lumbo-sacral (L5-S1) and thoraco-lumbar (T12-L1) joints. Data were collected while participants ran over ground at 3.8 m x s(-1) at three different stride lengths: preferred stride length, 20% greater than preferred, and 20% less than preferred. Inputs to the model were ground reaction forces, bilateral lower extremity and pelvis kinematics and inertial parameters, kinematics of the lumbar spine and thorax and inertial parameters of the lumbar segment. Repeated measures ANOVA were performed on the lower extremity sagittal kinematics and kinetics, including L5-S1 and T12-L1 three-dimensional joint angles, reaction forces and moments at touchdown and peak values during impact phase across the three stride conditions. Results indicated that L5-S1 and T12-L1 vertical reaction forces at touchdown and during the impact portion of the support phase increased significantly as stride length increased (P < 0.001), as did peak sagittal L5-S1 moments during impact (P = 0.018). Additionally, the transverse T12-L1 joint moment increased as running speed increased (P = 0.006). We concluded from our findings that our model was sensitive to our perturbations in healthy runners, and may prove useful in future mechanistic studies of L5-S1 mechanics.  相似文献   

7.
Abstract

A number of studies have investigated effects of speed on local dynamic stability of walking, although this relationship has been rarely investigated under changing task constraints, such as during forward and backward running. To rectify this gap in the literature, the aim of this study was to investigate the effect of running speed on local dynamic stability of forward and backward running on a treadmill. Fifteen healthy male participants took part in this study. Participants ran in forward and backward directions at speeds of 80%, 100% and 120% of their preferred running speed. The three-dimensional motion of a C7 marker was recorded using a motion capture system. Local dynamic stability of the marker was quantified using short- and long-term largest finite-time Lyapunov exponents (LyE). Results showed that short-term largest finite-time LyE values increased with participant speed meaning that local dynamic stability decreased with increasing speed. Long-term largest finite-time LyEs, however, remained unaffected as speed increased. Results of this study indicated that, as in walking, slow running is more stable than fast running. These findings improve understanding of how stability is regulated when constraints on the speed of movements is altered. Implications for the design of rehabilitation or sport practice programmes suggest how task constraints could be manipulated to facilitate adaptations in locomotion stability during athletic training.  相似文献   

8.
In 219 recreational male runners, we investigated changes in body mass, total body water, haematocrit, plasma sodium concentration ([Na(+)]), and urine specific gravity as well as fluid intake during a 100-km ultra-marathon. The athletes lost 1.9 kg (s = 1.4) of body mass, equal to 2.5% (s = 1.8) of body mass (P < 0.001), 0.7 kg (s = 1.0) of predicted skeletal muscle mass (P < 0.001), 0.2 kg (s = 1.3) of predicted fat mass (P < 0.05), and 0.9 L (s = 1.6) of predicted total body water (P < 0.001). Haematocrit decreased (P < 0.001), urine specific gravity (P < 0.001), plasma volume (P < 0.05), and plasma [Na(+)] (P < 0.05) all increased. Change in body mass was related to running speed (r = -0.16, P < 0.05), change in plasma volume was associated with change in plasma [Na(+)] (r = -0.28, P < 0.0001), and change in body mass was related to both change in plasma [Na(+)] (r = -0.36) and change in plasma volume (r = 0.31) (P < 0.0001). The athletes consumed 0.65 L (s = 0.27) fluid per hour. Fluid intake was related to both running speed (r = 0.42, P < 0.0001) and change in body mass (r = 0.23, P = 0.0006), but not post-race plasma [Na(+)] or change in plasma [Na(+)] (P > 0.05). In conclusion, faster runners lost more body mass, runners lost more body mass when they drank less fluid, and faster runners drank more fluid than slower runners.  相似文献   

9.
We investigated age-related differences in the relationships among acceleration, maximum running speed, and repeated-sprint performance in 61 highly trained young male soccer players (Under 14, n = 14; Under 16, n = 22; Under 18, n = 25). We also examined the possible influence of anthropometry (stature, body mass, fat-free mass) and biological maturation (age at peak height velocity) on performance in those three sprint-running qualities. Players were tested for 10-m sprint (acceleration), flying 20-m sprint (maximum running speed), and 10 × 30-m sprint (repeated-sprint performance) times. Correlations between acceleration, maximum running speed, and repeated-sprint performance were positive and large to almost perfect (r = 0.55-0.96), irrespective of age group. There were age-based differences both in absolute performance in the three sprint-running qualities (Under 18 > Under 16 > Under 14; P < 0.001) and when body mass and fat-free mass were statistically controlled (P < 0.05). In contrast, all between-group differences disappeared after adjustment for age at peak height velocity (P > 0.05). The large correlations among acceleration, maximum running speed, and repeated-sprint performance in all age groups, as well as the disappearance of between-group differences when adjusted for estimated biological maturity, suggest that these physical qualities in young highly trained soccer players might be considered as a general quality, which is likely to be related to qualitative adaptations that accompany maturation.  相似文献   

10.
The aim of this study was to determine the incidence of subject drop-out on a multi-stage shuttle run test and a modified incremental shuttle run test in which speed was increased by 0.014 m x s(-1) every 20-m shuttle to avoid the need for verbal speed cues. Analysis of the multi-stage shuttle run test with 208 elite female netball players and 381 elite male lacrosse players found that 13 (+/-3) players stopped after the first shuttle of each new level, in comparison with 5 (+/-2) players on any other shuttle. No obvious drop-out pattern was observed on the incremental shuttle run test with 273 male and 79 female undergraduate students. The mean difference between a test-retest condition (n = 20) for peak shuttle running speed (-0.03+/-0.01 m x s(-1)) and maximal heart rate (0.4+/-0.1 beats x min(-1)) on the incremental test showed no bias (P > 0.05). The 95% absolute confidence limits of agreement were+/-0.11 m x s(-1) for peak shuttle running speed and+/-5 beats min(-1) for maximal heart rate. The relationship (n = 27) between peak shuttle running speed on the incremental shuttle run test (4.22+/-0.14 m x s(-1)) and VO2max (59.0+/-1.7 ml kg(-1) x min(-1)) was r= 0.91 (P< 0.01), with a standard error of prediction of +/-2.6 ml x kg(-1) x min(-1). These results suggest verbal cues during the multi-stage shuttle run test may influence subject drop-out. The incremental shuttle run test shows no obvious drop-out patten and provides a valid estimate of VO2max.  相似文献   

11.
An inertial measurement unit (IMU) is widely considered to be an economical alternative to capture human motion in daily activities. Use of an IMU for clinical study, rehabilitation, and in the design of orthoses and prostheses has increased tremendously. However, its use in defining running gait is limited. This study presents a practical method to estimate running spatial and temporal parameters using an inertial sensor by placing it on a shoe. A combination of a zero-crossing method and thresholding is used to identify foot-strike and foot-off based on foot acceleration during running. Stride time, ground contact time and flight time can then be identified. An off-phase segmentation algorithm is applied to estimate stride length and running speed. These two parameters are commonly used to evaluate running efficiency and to differentiate elite runners. This study found that an IMU can estimate foot-strike and foot-off with average absolute time differences of 2.60–6.04 and 2.61–16.28 ms, respectively. Stride time was estimated with error between ? 4.04 and 0.33 ms. Stride length and running speed were estimated with maximum average errors of 45.97 mm and 0.41 km/h.  相似文献   

12.
Determining an athlete’s speed from broadcast video is a common practice in sport. Many software packages that perform data extraction from video files are expensive; however, open source software is also available, but lacks published validation for speed measurements. The purpose of this research was to examine the error of speed measurements extracted from video during an ice hockey skating exercise using open source software. The subject completed four exercises, at two speeds recorded by broadcast cameras set at five angles. The speeds from the broadcast cameras were compared to speeds calculated from a high-speed camera placed orthogonally to the exercise. Speeds from the broadcast cameras correlated well with the high-speed video for motion more than 12 m away from the broadcast camera. When comparing all the measured speeds, no significant difference was found between the speeds calculated by the high-speed camera (slow: 4.46 m/s ± 0.2; fast: 7.2 m/s ± 0.7) and the speed calculated from the broadcast cameras (slow: 4.50 m/s ± 0.4; fast: 7.34 m/s ± 0.6) (p > 0.05). The open source method was found to be less accurate when the athlete was close to (within 12 m of camera position) or moving directly toward the broadcast cameras.  相似文献   

13.
The aim of this study was to compare a batsman's running and turning speed during three runs while wearing either traditional batting pads or one of two models of newly designed cricket batting pads. Fifteen cricketers participated. The running and turning speeds were measured on three different days with players using the three pairs of batting pads for each trial in random order. The weights of the pads were 1.85 kg, 1.70 kg and 1.30 kg for P1, P2 and P3 respectively. Each player had to run three runs (3 × 17.68m), with the times recorded at the completion of each run, as well as the time to cover the distance from 5 m before and after the turn at the end of the first run. The fastest time from two trials for each pair of pads was retained for analysis. An analysis of variance (ANOVA) with repeated measures was used to determine the differences between the mean times of the three trials. The results showed no significant differences between the types of batting pads and the time to complete the run‐three‐runs test (P1 = 10.67 ± 0.48 s; P2 = 10.67 ± 0.43; P3 = 10.69 ± 0.44 s), the turning time (P1 = 2.34 ± 0.18 s; P2 = 2.32 ± 0.18 s; P3 = 2.35 ± 0.19 s) and to complete the third run (P1 = 3.49 ± 0.44 s; P2 = 3.53 ± 0.34 s; P3 = 3.51 ± 0.36 s). Of the 45 trials of three runs used for analysis, P, recorded the fastest time on 16 trials (36%), P2 on 19 trials (42%) and P3 on 10 trials (22%). The results showed no significant differences in the running or turning speeds, although there may be some practical relevance to using the newly designed cricket batting pads.  相似文献   

14.
We analyse the evolution of the slope (critical speed) and the y-intercept (anaerobic distance capacity) of the linear distance-time relationship over a century of Olympic running performances. The distance-time relationship of each Olympic Games (1920-2004) was plotted using the performances in the 800-, 1500- and 5000-m track events. Values for critical speed and anaerobic distance capacity were determined by linear modelling. Mean performances for the 800, 1500 and 5000 m were 104.9 +/- 1.5 s (1.4%), 217.2 +/- 2.8 s (1.3%) and 808.9 +/- 18.4 s (2.3%), respectively. Critical speed improved during the first three-quarters of the twentieth century to reach a plateau in 1984. This is in accordance with the literature (Peronnet & Thibault, 1989) and suggests that "human aerobic endurance" has improved within the century (+13.4%) and tends to stabilize. Anaerobic distance capacity was highly variable over the century (coefficient of variation = 9.4%) and did not show a linear improvement over the years as has previously been suggested (Peronnet & Thibault, 1989). This could be due to an artefact in the application of the two-parameter model to only three Olympic performances. A limitation to the use of this linear mathematical model to fit physiological data may have been demonstrated.  相似文献   

15.
Measurement of ground reaction force (GRF) in running provides a direct indication of the loads to which the body is subjected at each foot-ground contact, and can provide an objective explanation for performance outcomes. Traditionally, the collection of three orthogonal component GRF data in running requires an athlete to complete a series of return loops along a laboratory based runway, within which a force platform is embedded, in order to collect data from a discrete footfall. The major disadvantages associated with this GRF data collection methodology include the inability to assess multiple consecutive foot contacts and the fact that measurements are typically confined to the laboratory. The objective of this research was to investigate the potential for wearable instrumentation to be employed, in conjunction with artificial neural network (ANN) and multiple linear regression (MLR) models, for the estimation of GRF in middle distance running. A modular wearable data acquisition system was developed to acquire in-shoe force (ISF) data. Matched data sets from wearable instrumentation (source data) and force plate (target data) records were collected from elite middle-distance runners under controlled laboratory conditions for the purposes of ANN and MLR model development (MD) and model validation (MV). In terms of statistical measures of prediction accuracy the MLR model was found to provide a superior level of accuracy for the prediction of the vertical and medio-lateral components of GRF and alternatively, the ANN model provided the most accurate predictions of the anterior-posterior component of GRF. The prediction accuracy of each component of GRF was found to be governed by the inherent signal variability, in which case the vertical and anterior-posterior components were more reliable and subsequently predicted significantly more accurately than the medio-lateral component. The emerging capability for obtaining continuous GRF records from wearable instrumentation has the potential to permit unprecedented quantification of training stress and competition demands in running.  相似文献   

16.
The purpose of this study was to determine whether there are differences in the perceived comfort, plantar pressure, and rearfoot motion between laced running shoes and elastic-covered running shoes. Fifteen male amateur runners participated in the study. Each participant was assigned laced running shoes and elastic-covered running shoes for use during the study. The perceived comfort, plantar loading, and rearfoot motion control of each type of shoes during running were recorded. When the laced running shoes and elastic-covered running shoes were compared, the elastic-covered running shoes were given a lower perceived comfort rating in terms of shoe length, width, heel cup fitting, and forefoot cushioning. The elastic-covered running shoes also recorded higher peak plantar pressure in the lateral side of the forefoot, as well as larger maximum rearfoot pronation. Overall, shoelaces can help runners obtain better foot-shoe fit. They increase the perceived comfort, and decrease the maximum pronation and plantar pressure. Moreover, shoelaces may help prevent injury in running by allowing better control of the aforementioned factors.  相似文献   

17.
深入探讨远运动最佳腾起角的运动生物力学公式,分析了身体垂直速度、水平助跑速度利用率与最佳腾起角和跳远成绩的关系。以理论和大量技术数据为依据,指出起跳时身体垂直速度利用率对跳远成绩起着至关重要的作用。  相似文献   

18.
In this study, we examined the time course of changes in running economy following a 30-min downhill (-15%) run at 70% peak aerobic power (VO2peak). Ten young men performed level running at 65, 75, and 85% VO2peak (5 min for each intensity) before, immediately after, and 1 - 5 days after the downhill run, at which times oxygen consumption (VO2), minute ventilation, the respiratory exchange ratio (RER), heart rate, ratings of perceived exertion (RPE), and blood lactate concentration were measured. Stride length, stride frequency, and range of motion of the ankle, knee, and hip joints during the level runs were analysed using high-speed (120-Hz) video images. Downhill running induced reductions (7 - 21%, P < 0.05) in maximal isometric strength of the knee extensors, three- to six-fold increases in plasma creatine kinase activity and myoglobin concentration, and muscle soreness for 4 days after the downhill run. Oxygen consumption increased (4 - 7%, P < 0.05) immediately to 3 days after downhill running. There were also increases (P < 0.05) in heart rate, minute ventilation, RER, RPE, blood lactate concentration, and stride frequency, as well as reductions in stride length and range of motion of the ankle and knee. The results suggest that changes in running form and compromised muscle function due to muscle damage contribute to the reduction in running economy for 3 days after downhill running.  相似文献   

19.
The aim of this study was to assess the effect of the recovery duration in intermittent training drills on metabolism and coordination in sport games. Ten nationally ranked male tennis players (age 25.3+/-3.7 years, height 1.83+/-0.8 m, body mass 77.8+/-7.7 kg; mean +/- sx) participated in a passing-shot drill (baseline sprint with subsequent passing shot) that aimed to improve both starting speed and stroke quality (speed and precision). Time pressure for stroke preparation was individually adjusted by a ball-machine and corresponded to 80% of maximum running speed. In two trials (T10, T15) separated by 2 weeks, the players completed 30 strokes and sprints subdivided into 6 x 5 repetitions with a 1 min rest between series. The rest between each stroke-and-sprint lasted either 10 s (T10) or 15 s (T15). The sequence of both conditions was randomized between participants. Post-exercise blood lactate concentration was significantly elevated in T10 (9.04+/-3.06 vs 5.01+/-1.35 mmol x l(-1), P < 0.01). Running time for stroke preparation (1.405+/-0.044 vs 1.376+/-0.045 s, P < 0.05) and stroke speed (106+/-12 vs 114+/-8 km x h(-1), P < 0.05) were significantly decreased in T10, while stroke precision - that is, more target hits (P < 0.1) and fewer errors (P < 0.05) - tended to be higher. We conclude that running speed and stroke quality during intermittent tennis drills are highly dependent on the duration of recovery time. Optimization of training efficacy in sport games (e.g. combined improvement of conditional and technical skills) requires skilful fine-tuning of monitoring guidelines.  相似文献   

20.
The aim of this study was to assess the effect of the recovery duration in intermittent training drills on metabolism and coordination in sport games. Ten nationally ranked male tennis players (age 25.3±3.7 years, height 1.83±0.8 m, body mass 77.8±7.7 kg; mean ±s x ) participated in a passing-shot drill (baseline sprint with subsequent passing shot) that aimed to improve both starting speed and stroke quality (speed and precision). Time pressure for stroke preparation was individually adjusted by a ball-machine and corresponded to 80% of maximum running speed. In two trials (T10, T15) separated by 2 weeks, the players completed 30 strokes and sprints subdivided into 6 2 5 repetitions with a 1 min rest between series. The rest between each stroke-and-sprint lasted either 10 s (T10) or 15 s (T15). The sequence of both conditions was randomized between participants. Post-exercise blood lactate concentration was significantly elevated in T10 (9.04±3.06 vs 5.01±1.35 mmol·l-1, P ? 0.01). Running time for stroke preparation (1.405±0.044 vs 1.376±0.045 s, P ? 0.05) and stroke speed (106±12 vs 114±8 km·h-1, P ? 0.05) were significantly decreased in T10, while stroke precision - that is, more target hits ( P ? 0.1) and fewer errors (P ? 0.05) - tended to be higher. We conclude that running speed and stroke quality during intermittent tennis drills are highly dependent on the duration of recovery time. Optimization of training efficacy in sport games (e.g. combined improvement of conditional and technical skills) requires skilful fine-tuning of monitoring guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号