首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用均值不等式求函数的最值是高中数学的一个重点,也是高考的一个热点,三个必要条件即一正(各项的值为正)二定(各项的和或积为定值)三相等(取等号的条件成立)更是相关考题瞄准的焦点.在具体的题目中,"正数"条件往往从题设中获得解决,"相等"条件也容易验证确定,而要获得"定值"条件常常被设计为一个难点,它需要一定的灵活性和变形技巧,因此"定值"条件决定着均值不等式应用的可行性,这是解题成败的关键.下面就一典型题目对此加以说明  相似文献   

2.
利用均值不等式求最值或证明不等式是高中数学的一个重点.运用时必须具备三个必要条件--即一正(各项的值为正)、二定(各项的和或积为定值)、三相等(取等号的条件).但在题设中未给出和(积)为定值的条件下,如何凑出定值使等号成立,却深感困难,为此,本文举例说明构造均值不等式等号成立的常用技巧.  相似文献   

3.
用平均值不等式求最值(或证明不等式)是高中代数中的一个重点和难点.应用时必须注意三个限制条件,即“一正(各项都为正数)、二定(各项的  相似文献   

4.
均值不等式是不等式中的重要内容,也是历年高考重点考查的知识点之一.利用均值不等式求最值要注意三方面的条件:(1)各项或各因式为正,(2)和或积为定值,(3)各项或各因式能取得相等的值.所以解该类问题的配凑变形均要以这三个条件为目标.  相似文献   

5.
我们熟知,利用均值不等式求最值,须具备三个条件:(1)各项必须是正数;(2)各项的和或积必须是定值;(3)各项必须相等,其中尤为重要的是和(积)为定值。如何凄出定值是解决此类问题的关键,下面介绍几种配凑方法,供参考。  相似文献   

6.
运用均值不等式求最值是一种常用的求最值的方法,但在运用均值不等式求最值时必须同时注意三个条件,即“一正,二定,三相等”。“一正”是指各项必须为正,“二定”是指各项的乘积或各项之和为定值,“三相等”是指各项可取到相等的值。忽视其中任何一个条件,都会导致解题错误。  相似文献   

7.
运用均值不等式求函数最值,是中学数学中求函数最值的重要方法之一.大家都知道利用均值不等式求函数最值应满足三个条件:一、各项全正。二、和积定值.三、等号成立.对于不满足这三个条件的函数,可采用下列技巧来转化.  相似文献   

8.
基本不等式a+b≥2槡ab是不等式中的一个重要内容,利用基本不等式求最值问题也是高考中的热点内容.在运用基本不等式求最值问题时要注意"一正,二定,三相等",即"条件中各项为正数,和或积必须为定值,各项相等时取得等号"三个条件.若有任何一个条件没有满足时,结果就有可能出现错误.在[1]中,作者通过一个例子,借助函数图像深刻分析了在乘积不为定值的情况下运用基本不等式求最小值时所出现的一类典型错误.本文将结合实例,进一步分析该类解法的几何特征.[1]中给出的例子是:  相似文献   

9.
运用平均值不等式的条件是:各因式或各项为正,它们的和或积为定值,各式或各项取相等的值.这三个条件缺一不可.在许多情况下并不能直接运用平均值不等式解题,而需要审视条件和待求(或待证)式的结构,作出合理的变形才能运用,其中巧配是重要技巧之一.  相似文献   

10.
我们熟知,利用均值不等式求最值,必须具备三个条件:"一正二定三相等",其中尤为重要的是和(积)为定值。本文就题设未给出和(积)为定值的条件下,如何凑出定值求出最值,谈四种常用的变凑方式.  相似文献   

11.
<正>运用基本不等式求最值是高中数学求最值的基本方法之一.在运用基本不等式求最值时应注意以下三个方面:(1)表达式中含变量的各项均为正;(2)表达式中含变量的各项之和(或积)应为定值;(3)表达式中含变量的各项可以相等.这三者缺一不可,下面通过2013年的高考题予以说明,仅供参考.  相似文献   

12.
<正>利用均值不等式求和(积)的最小(大)值,是中职对口升学的一个重要考点,考生必须熟练掌握.考生在利用均值不等式求最值时,要注意只有当以下三个条件同时成立时才能使用:(1)a1,a2,…an均为正数;(2)积(和)"a1a2…an"("a1+a2+…+an")为定值;(3)各个正数相等.例1已知x>0求2-3x-4x的最大值.分析:当a>0,b>0时,  相似文献   

13.
微分中值定理逆命题的讨论   总被引:1,自引:0,他引:1  
对于常见的三个微分中值定理(罗尔中值定理,拉格朗日中值定理,柯西中值定理)的逆命题何时成立的问题进行了讨论。对于f(x)仅有一个零点的情况得到了使罗尔中值定理逆命题成立的充要务件;对于一般情况,也得到了一个有价值的充要条件,利用辅助函数推广了关于罗尔中值定理逆命题的有关结果,得到了拉格朗日中值定理与柯西中值定理逆命题成立的条件。  相似文献   

14.
利用均值不等式求函数的最值是高中数学中的一个重要方法,应注意满足三个条件,即"一正、二定、三相等".为了满足这三个条件,有时需要创设条件,进行合理配凑和适当变形.下面举例说明.  相似文献   

15.
在立体几何中,涉及最值的问题主要有三类:一是距离(长度)的最值问题;二是面(体)积的最值问题;三是在最值已知的条件下,确定参数(其它几何量)的值.下面举例说明.  相似文献   

16.
运用基本不等式求最值,是中学数学中求最值的基本方法之一.众所周知用基本不等式求最值时,必须满足三个条件:(1)表达武中含变量的项是正的;(2)表达武中含变量的项之和(积)是定值;(3)表达式中含变量的项能够相等.以上三个条件通常简称为一正二定三相等.  相似文献   

17.
解三元一次方程组的基本思想和解二元一次方程组一样,仍然是消元,其基本方法也是代入消元法和加减消元法,一般步骤为:(1)利用代入法和加减法,消去一个未知数,得出一个二元一次方程组;(2)解这个二元一次方程组,求得两个未知数的值;(3)将这两个未知数的值代入原方程组中较简单的一个方程,求出第三个未知数的  相似文献   

18.
对于二次函数,若将自变量范围缩小到某一特定的区间或附加其它限制条件(如取自然数等),研究相应条件下的最值,则成为中学数学中一种典型的最值问题——二次函数条件最值问题。在恢复高考以来历年的高考试题中,直接考查二次函数条件最值的试题有之;利用化归思想间接考查二次函数条件最值的试题更为多见.它已成为高考命题中的“热点”之一。一、考情分析现将78年~92年文、理科高考试题中有关二次函数最值试题的分布列表如下; 从表中可以看出,对二次函数最值问题的考查呈现三个“高峰期”:一是78~79年;二是82~85年;三是89~92年。具体分析研究表中所列各相关试题,可以将它们归纳为以下三类: 第一类是关于实数集R上的二次函数最值.如题1(79年文1) 求函数y=2x~2-2x 1的极小值。题2 (78年理七(1)) 已知函数y=x~2 (2m 1)x m~2-1(m为实数),m是什么数值时,y的极值是0?  相似文献   

19.
利用均值不等式(ab)/(1/2)≤a+b/2(a>0,b>0)求最值,要特别注意"一正、二定、三相等"这三个条件,只有同时满足这三个条件,才能取得最大值或最小值.解题时,为了满足三个条件,必须将式子作巧妙的变形,下面总结变形的十种策略.  相似文献   

20.
利用判别式和韦达定理讨论一元二次方程根的情况,进而利用它研究二次函数的图象与x轴的交点情况,无疑是初中代数的一个重点,同时也是一个难点,笔者从教学实践中发现,学生在处理这类问题时,往往由于条件不足而造成错解,条件过剩使解题思路不合理,解题过程繁复。 例1 选择题:若方程3x~2 (k~2-3k-10)x 3k=0的两根互为相反数,k的值为( )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号