共查询到20条相似文献,搜索用时 0 毫秒
1.
Gamification is here to stay, and tourism and hospitality online review platforms are taking advantage of it to attract travelers and motivate them to contribute to their websites. Yet, literature in tourism is scarce in studying how effectively is users’ behavior changing through gamification features. This research aims at filling such gap through a data-driven approach based on a large volume of online reviews (a total of 67,685) collected from TripAdvisor between 2016 and 2017. Four artificial neural networks were trained to model title and review’s word length, and title and review’s sentiment score, using as input 12 gamification features used in TripAdvisor including points and badges. After validating the accuracy of the model for extracting knowledge, the data-based sensitivity analysis was applied to understand how each of the 12 features contributed to explaining review length and its sentiment score. Three badge features were considered the most relevant ones, including the total number of badges, the passport badges, and the explorer badges, providing evidence of a relation between gamification features and traveler’s behavior when writing reviews. 相似文献
2.
Asad Abdi Siti Mariyam Shamsuddin Ramiz M. Aliguliyev 《Information processing & management》2018,54(2):318-338
Sentiment analysis concerns the study of opinions expressed in a text. This paper presents the QMOS method, which employs a combination of sentiment analysis and summarization approaches. It is a lexicon-based method to query-based multi-documents summarization of opinion expressed in reviews.QMOS combines multiple sentiment dictionaries to improve word coverage limit of the individual lexicon. A major problem for a dictionary-based approach is the semantic gap between the prior polarity of a word presented by a lexicon and the word polarity in a specific context. This is due to the fact that, the polarity of a word depends on the context in which it is being used. Furthermore, the type of a sentence can also affect the performance of a sentiment analysis approach. Therefore, to tackle the aforementioned challenges, QMOS integrates multiple strategies to adjust word prior sentiment orientation while also considers the type of sentence. QMOS also employs the Semantic Sentiment Approach to determine the sentiment score of a word if it is not included in a sentiment lexicon.On the other hand, the most of the existing methods fail to distinguish the meaning of a review sentence and user's query when both of them share the similar bag-of-words; hence there is often a conflict between the extracted opinionated sentences and users’ needs. However, the summarization phase of QMOS is able to avoid extracting a review sentence whose similarity with the user's query is high but whose meaning is different. The method also employs the greedy algorithm and query expansion approach to reduce redundancy and bridge the lexical gaps for similar contexts that are expressed using different wording, respectively. Our experiment shows that the QMOS method can significantly improve the performance and make QMOS comparable to other existing methods. 相似文献
3.
《Information processing & management》2016,52(1):36-45
The polarity shift problem is a major factor that affects classification performance of machine-learning-based sentiment analysis systems. In this paper, we propose a three-stage cascade model to address the polarity shift problem in the context of document-level sentiment classification. We first split each document into a set of subsentences and build a hybrid model that employs rules and statistical methods to detect explicit and implicit polarity shifts, respectively. Secondly, we propose a polarity shift elimination method, to remove polarity shift in negations. Finally, we train base classifiers on training subsets divided by different types of polarity shifts, and use a weighted combination of the component classifiers for sentiment classification. The results on a range of experiments illustrate that our approach significantly outperforms several alternative methods for polarity shift detection and elimination. 相似文献
4.
Review helpfulness is attracting increasing attention of practitioners and academics. It helps in reducing risks and uncertainty faced by users in online shopping. This study examines uninvestigated variables by looking at not only the review characteristics but also important indicators of reviewers. Several significant review content and two reviewer variables are proposed and an effective review helpfulness prediction model is built using stochastic gradient boosting learning method. This study derived a mechanism to extract novel review content variables from review text. Six popular machine learning models and three real-life Amazon review data sets are used for analysis. Our results are robust to several product categories and along three Amazon review data sets. The results show that review content variables deliver the best performance as compared to the reviewer and state-of-the-art baseline as a standalone model. This study finds that reviewer helpfulness per day and syllables in review text strongly relates to review helpfulness. Moreover, the number of space, aux verb, drives words in review text and productivity score of a reviewer are also effective predictors of review helpfulness. The findings will help customers to write better reviews, help retailers to manage their websites intelligently and aid customers in their product purchasing decisions. 相似文献
5.
Mohammad Tubishat Norisma Idris Mohammad A.M. Abushariah 《Information processing & management》2018,54(4):545-563
Sentiment analysis is a text classification branch, which is defined as the process of extracting sentiment terms (i.e. feature/aspect, or opinion) and determining their opinion semantic orientation. At aspect level, aspect extraction is the core task for sentiment analysis which can either be implicit or explicit aspects. The growth of sentiment analysis has resulted in the emergence of various techniques for both explicit and implicit aspect extraction. However, majority of the research attempts targeted explicit aspect extraction, which indicates that there is a lack of research on implicit aspect extraction. This research provides a review of implicit aspect/features extraction techniques from different perspectives. The first perspective is making a comparison analysis for the techniques available for implicit term extraction with a brief summary of each technique. The second perspective is classifying and comparing the performance, datasets, language used, and shortcomings of the available techniques. In this study, over 50 articles have been reviewed, however, only 45 articles on implicit aspect extraction that span from 2005 to 2016 were analyzed and discussed. Majority of the researchers on implicit aspects extraction rely heavily on unsupervised methods in their research, which makes about 64% of the 45 articles, followed by supervised methods of about 27%, and lastly semi-supervised of 9%. In addition, 25 articles conducted the research work solely on product reviews, and 5 articles conducted their research work using product reviews jointly with other types of data, which makes product review datasets the most frequently used data type compared to other types. Furthermore, research on implicit aspect features extraction has focused on English and Chinese languages compared to other languages. Finally, this review also provides recommendations for future research directions and open problems. 相似文献
6.
《Information processing & management》2016,52(1):5-19
Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4–5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset. 相似文献
7.
Wenjuan Luo Fuzhen Zhuang Weizhong Zhao Qing He Zhongzhi Shi 《Information processing & management》2015
Aspect level sentiment analysis is important for numerous opinion mining and market analysis applications. In this paper, we study the problem of identifying and rating review aspects, which is the fundamental task in aspect level sentiment analysis. Previous review aspect analysis methods seldom consider entity or rating but only 2-tuples, i.e., head and modifier pair, e.g., in the phrase “nice room”, “room” is the head and “nice” is the modifier. To solve this problem, we novelly present a Quad-tuple Probability Latent Semantic Analysis (QPLSA), which incorporates entity and its rating together with the 2-tuples into the PLSA model. Specifically, QPLSA not only generates fine-granularity aspects, but also captures the correlations between words and ratings. We also develop two novel prediction approaches, the Quad-tuple Prediction (from the global perspective) and the Expectation Prediction (from the local perspective). For evaluation, systematic experiments show that: Quad-tuple PLSA outperforms 2-tuple PLSA significantly on both aspect identification and aspect rating prediction for publication datasets. Moreover, for aspect rating prediction, QPLSA shows significant superiority over state-of-the-art baseline methods. Besides, the Quad-tuple Prediction and the Expectation Prediction also show their strong ability in aspect rating on different datasets. 相似文献
8.
《Information processing & management》2016,52(1):20-35
Social media represents an emerging challenging sector where the natural language expressions of people can be easily reported through blogs and short text messages. This is rapidly creating unique contents of massive dimensions that need to be efficiently and effectively analyzed to create actionable knowledge for decision making processes. A key information that can be grasped from social environments relates to the polarity of text messages. To better capture the sentiment orientation of the messages, several valuable expressive forms could be taken into account. In this paper, three expressive signals – typically used in microblogs – have been explored: (1) adjectives, (2) emoticon, emphatic and onomatopoeic expressions and (3) expressive lengthening. Once a text message has been normalized to better conform social media posts to a canonical language, the considered expressive signals have been used to enrich the feature space and train several baseline and ensemble classifiers aimed at polarity classification. The experimental results show that adjectives are more discriminative and impacting than the other considered expressive signals. 相似文献
9.
《Information processing & management》2023,60(2):103230
As a hot spot these years, cross-domain sentiment classification aims to learn a reliable classifier using labeled data from a source domain and evaluate the classifier on a target domain. In this vein, most approaches utilized domain adaptation that maps data from different domains into a common feature space. To further improve the model performance, several methods targeted to mine domain-specific information were proposed. However, most of them only utilized a limited part of domain-specific information. In this study, we first develop a method of extracting domain-specific words based on the topic information derived from topic models. Then, we propose a Topic Driven Adaptive Network (TDAN) for cross-domain sentiment classification. The network consists of two sub-networks: a semantics attention network and a domain-specific word attention network, the structures of which are based on transformers. These sub-networks take different forms of input and their outputs are fused as the feature vector. Experiments validate the effectiveness of our TDAN on sentiment classification across domains. Case studies also indicate that topic models have the potential to add value to cross-domain sentiment classification by discovering interpretable and low-dimensional subspaces. 相似文献
10.
The paper presents methods of retrieving blog posts containing opinions about an entity expressed in the query. The methods use a lexicon of subjective words and phrases compiled from manually and automatically developed resources. One of the methods uses the Kullback–Leibler divergence to weight subjective words occurring near query terms in documents, another uses proximity between the occurrences of query terms and subjective words in documents, and the third combines both factors. Methods of structuring queries into facets, facet expansion using Wikipedia, and a facet-based retrieval are also investigated in this work. The methods were evaluated using the TREC 2007 and 2008 Blog track topics, and proved to be highly effective. 相似文献
11.
Simona Balbi Michelangelo Misuraca Germana Scepi 《Information processing & management》2018,54(4):674-685
Web 2.0 allows people to express and share their opinions about products and services they buy/use. These opinions can be expressed in various ways: numbers, texts, emoticons, pictures, videos, audios, and so on. There has been great interest in the strategies for extracting, organising and analysing this kind of information. In a social media mining framework, in particular, the use of textual data has been explored in depth and still represents a challenge. On a rating and review website, user satisfaction can be detected both from a rating scale and from the written text. However, in common practice, there is a lack of algorithms able to combine judgments provided with both comments and scores. In this paper we propose a strategy to jointly measure the user evaluations obtained from the two systems. Text polarity is detected with a sentiment-based approach, and then combined with the associated rating score. The new rating scale has a finer granularity. Moreover, also enables the reviews to be ranked. We show the effectiveness of our proposal by analysing a set of reviews about the Uffizi Gallery in Florence (Italy) published on TripAdvisor. 相似文献
12.
本文根据两次全国R&D资源清查数据,研究山东省R&D资源十年来的变化,并与粤苏浙三省进行比较分析,观察山东省与其他三省R&D资源力量的变化对比情况。 相似文献
13.
《Information processing & management》2022,59(5):103038
As an emerging task in opinion mining, End-to-End Multimodal Aspect-Based Sentiment Analysis (MABSA) aims to extract all the aspect-sentiment pairs mentioned in a pair of sentence and image. Most existing methods of MABSA do not explicitly incorporate aspect and sentiment information in their textual and visual representations and fail to consider the different contributions of visual representations to each word or aspect in the text. To tackle these limitations, we propose a multi-task learning framework named Cross-Modal Multitask Transformer (CMMT), which incorporates two auxiliary tasks to learn the aspect/sentiment-aware intra-modal representations and introduces a Text-Guided Cross-Modal Interaction Module to dynamically control the contributions of the visual information to the representation of each word in the inter-modal interaction. Experimental results demonstrate that CMMT consistently outperforms the state-of-the-art approach JML by 3.1, 3.3, and 4.1 absolute percentage points on three Twitter datasets for the End-to-End MABSA task, respectively. Moreover, further analysis shows that CMMT is superior to comparison systems in both aspect extraction (AE) and sentiment classification (SC), which would move the development of multimodal AE and SC algorithms forward with improved performance. 相似文献
14.
《International Journal of Information Management》2017,37(3):202-213
Due to the proliferation of Web 2.0 technology, e-commerce has evolved into social commerce. In this social commerce era, consumers are increasingly dependent on each other and look for social support (informational and emotional) online even before making purchases. This study examines the content of consumer reviews, a fundamental construct of social commerce. Topics expressed in consumer reviews (collected from Amazon.com) are explored using a machine learning technique (i.e. latent semantic analysis). This study documents the thematic differences between positive and negative reviews and finds that negative reviews report service-related failures while positive reviews relate more to the product, among other things. Next, the informational support aspect of social commerce is explored by identifying the topics expressed in reviews that are helpful in purchase decisions. The findings demonstrate that potential customers (i.e. those who would like to purchase a product in the near future and currently are reading reviews with the intention to decide whether or not to buy that product) find the negative reviews containing service failure information and the positive reviews containing information on core functionalities, technical aspects, and aesthetics to be more helpful. Theoretical and managerial implications are discussed. 相似文献
15.
《Information processing & management》2022,59(2):102795
This paper presents an approach to measuring business sentiment based on textual data. Business sentiment has been measured by traditional surveys, which are costly and time-consuming to conduct. To address the issues, we take advantage of daily newspaper articles and adopt a self-attention-based model to define a business sentiment index, named S-APIR, where outlier detection models are investigated to properly handle various genres of news articles. Moreover, we propose a simple approach to temporally analyzing how much any given event contributed to the predicted business sentiment index. To demonstrate the validity of the proposed approach, an extensive analysis is carried out on 12 years’ worth of newspaper articles. The analysis shows that the S-APIR index is strongly and positively correlated with established survey-based index (up to correlation coefficient ) and that the outlier detection is effective especially for a general newspaper. Also, S-APIR is compared with a variety of economic indices, revealing the properties of S-APIR that it reflects the trend of the macroeconomy as well as the economic outlook and sentiment of economic agents. Moreover, to illustrate how S-APIR could benefit economists and policymakers, several events are analyzed with respect to their impacts on business sentiment over time. 相似文献
16.
国内随着2004年网购的兴起,研究在线商品评论的文章开始逐年增多,本研究尝试利用文献计量学的方法对国内在线商品评论的学术文献进行统计分析,以探寻该领域的研究热点。以CNKI期刊全文数据库为数据来源,以BlueMC和SPSS软件为工具,对国内在线评论文献的关键词,通过词云图聚类和共词分析探索研究热点。提炼出在线评论研究的4个基本分析单元:内容、技术、用户、应用;五大研究热点:口碑传播效应、信息服务与使用、口碑传播心理、信息质量评估和知识挖掘与发现;以及三大研究层面:形态层面、受众层面和效果层面,为把握在线评论的研究现状和相关内容的进一步研究奠定了基础。 相似文献
17.
《Information processing & management》2023,60(4):103325
Climate change has become one of the most significant crises of our time. Public opinion on climate change is influenced by social media platforms such as Twitter, often divided into believers and deniers. In this paper, we propose a framework to classify a tweet’s stance on climate change (denier/believer). Existing approaches to stance detection and classification of climate change tweets either have paid little attention to the characteristics of deniers’ tweets or often lack an appropriate architecture. However, the relevant literature reveals that the sentimental aspects and time perspective of climate change conversations on Twitter have a major impact on public attitudes and environmental orientation. Therefore, in our study, we focus on exploring the role of temporal orientation and sentiment analysis (auxiliary tasks) in detecting the attitude of tweets on climate change (main task). Our proposed framework STASY integrates word- and sentence-based feature encoders with the intra-task and shared-private attention frameworks to better encode the interactions between task-specific and shared features. We conducted our experiments on our novel curated climate change CLiCS dataset (2465 denier and 7235 believer tweets), two publicly available climate change datasets (ClimateICWSM-2022 and ClimateStance-2022), and two benchmark stance detection datasets (SemEval-2016 and COVID-19-Stance). Experiments show that our proposed approach improves stance detection performance (with an average improvement of 12.14% on our climate change dataset, 15.18% on ClimateICWSM-2022, 12.94% on ClimateStance-2022, 19.38% on SemEval-2016, and 35.01% on COVID-19-Stance in terms of average F1 scores) by benefiting from the auxiliary tasks compared to the baseline methods. 相似文献
18.
Mohammad Al-Smadi Mahmoud Al-Ayyoub Yaser Jararweh Omar Qawasmeh 《Information processing & management》2019,56(2):308-319
This research presents an enhanced approach for Aspect-Based Sentiment Analysis (ABSA) of Hotels’ Arabic reviews using supervised machine learning. The proposed approach employs a state-of-the-art research of training a set of classifiers with morphological, syntactic, and semantic features to address the research tasks namely: (a) T1:Aspect Category Identification, (b) T2:Opinion Target Expression (OTE) Extraction, and (c) T3: Sentiment Polarity Identification. Employed classifiers include Naïve Bayes, Bayes Networks, Decision Tree, K-Nearest Neighbor (K-NN), and Support-Vector Machine (SVM).The approach was evaluated using a reference dataset based on Semantic Evaluation 2016 workshop (SemEval-2016: Task-5). Results show that the supervised learning approach outperforms related work evaluated using the same dataset. More precisely, evaluation results show that all classifiers in the proposed approach outperform the baseline approach, and the overall enhancement for the best performing classifier (SVM) is around 53% for T1, around 59% for T2, and around 19% in T3. 相似文献
19.
20.
《Information processing & management》2023,60(2):103223
Aspect-based sentiment analysis aims to determine sentiment polarities toward specific aspect terms within the same sentence or document. Most recent studies adopted attention-based neural network models to implicitly connect aspect terms with context words. However, these studies were limited by insufficient interaction between aspect terms and opinion words, leading to poor performance on robustness test sets. In addition, we have found that robustness test sets create new sentences that interfere with the original information of a sentence, which often makes the text too long and leads to the problem of long-distance dependence. Simultaneously, these new sentences produce more non-target aspect terms, misleading the model because of the lack of relevant knowledge guidance. This study proposes a knowledge guided multi-granularity graph convolutional neural network (KMGCN) to solve these problems. The multi-granularity attention mechanism is designed to enhance the interaction between aspect terms and opinion words. To address the long-distance dependence, KMGCN uses a graph convolutional network that relies on a semantic map based on fine-tuning pre-trained models. In particular, KMGCN uses a mask mechanism guided by conceptual knowledge to encounter more aspect terms (including target and non-target aspect terms). Experiments are conducted on 12 SemEval-2014 variant benchmarking datasets, and the results demonstrated the effectiveness of the proposed framework. 相似文献