首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
要灵活运用幂的运算法则解题,必须掌握以下几种常用的转化策略.一、化为同底数的幂例1如果3×9m×27m=321,那么m=.(1990年“汉江杯”初一数学竞赛试题)分析:注意到9、27都可以化成以3为底数的幂,因此可以把等式的两边都化成以3为底数的幂,进行运算后由指数相等列方程求m.解:已知等式可化为3×32m×33m=321,即31 2m 3m=321,从而有1 2m 3m=21,解得m=4.例2已知4x=8y-1,9y=27x-1,求xy-(x y)2的值.(2000年吉林省初一数学竞赛试题)分析:由于4=22,8=23,9=32,27=33,因此可以把两个等式的左、右两边分别化成以2和3为底数的幂来求解.解:由已知等式有:2…  相似文献   

2.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

3.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

4.
一、作差比较法例1求证:2+sin2x≥2(sinx+cosx).证明∵左边-右边=2(1-sinx)-2cosx(1-sinx)=2(1-sinx)(1-cosx)≥0,∴原不等式成立.二、判别式法例2已知函数:y=sec2x-tanxsec2x+tanx,求证:13≤y≤3.证明∵y=sec2x-tanxsec2x+tanx=1+tan2x-tanx1+tan2x+tanx,∴(y-1)tan2x+(y+1)tanx+(y-1)=0.当y=1时,tanx=0;当y≠1时,tanxR.∴Δ=(y+1)2-4(y-1)2≥0,∴13≤y≤3.三、分析综合法例3已知01.证明∵cosx>0,cosy>0,要证原不等式成立,只须证cos2x+y2>cosxcosy,只须证1+cos(x+y)2>cosxcosy,只须证1+cos(x+y)-2cosxco…  相似文献   

5.
利用恒等式a(x_1 x_2)±x_1x_2=±(x_1±a)(x_2±a)±a~2求方程的整数解与证明条件不等式十分有效。例1 求方程x y-xy=324的整数解解原方程化为 -(x-1)(y-1) 1=324即(x-1)(y-1)=-323。∵ -323=(-1)×323=l×(-323) =(-17)×19=17×(-19)∴ (1){x-1=-1 y-1=323;(2){x-1=1 y-1=-323; (3){x-1=-17 y-1=19;(4){x-1=17 y-1=-19。解得: (1){x=0, y=324;(2){x=2, y=-322; (3){x=-16 y=20;(4){X=18 y=-18。注意到原方程是对称轮换方程,  相似文献   

6.
误区一:最大整数解就是目标函数取最大整数值.【例1】 已知x,y满足不等式组2x-y-3>02x+3y-6<03x-5y-15<0 求x+y的最大整数解.错解:依约束条件画出可行域如下图所示由3x-5y-15=02x+3y-6=0解得x=7519y=-1219∴x+y=7519-1219=6319,∴x+y的最大整数解为3.点击:错误主要原因是把目标函数的最大整数值与最大整数解混为一谈,最大整数解是使目标函数取得最大值时的整数解,显然,此时的最大值一定是整数值.正解:于错解的前部分过程相同,∴x+y=6319=3619.∴令x+y=3则y=3-x代入可行域解得3相似文献   

7.
最值问题是初中数学的一个重要内容,也是各种考试命题的一个热点。笔者根据自己的教学体会,将初中阶段所涉及的求函数最值问题的题目类型归纳如下。 一、求y=ax~2+bx+c(a≠0)型的最大(小) 值 当a>0时,y最小值=(4ac-b~2)/4a;当a<0时,y最大值=(4ac-b~2)/4a。 例1.求y=-2x+7的最大值. 解 ∵a<0,∴y最大值=(81)/8. 例2.求y=2x~2-3x+4的最小值. 解 ∵a<0,∴y最小值=(23)/8. 二、求隐二次函数的最大(小)值 已知y与x不成二次函数关系,但z与x成二次函数关系,可以先求z的最大(小)值,而后再求y的最大(小)值. 例3.求函数y=1/(2+(x-1)~2)的最大值.  相似文献   

8.
一、利用对称式求解例 1 .已知 :a=15- 2 ,b=15 2 ,求a2 b2 7的值。解 :由题设可得 a b=2 5,ab=1。∴原式 =( a b) 2 - 2 ab 7=( 2 5) 2 - 2 7=2 5=5。二、定义法求解例 2 .已知 y=x- 8 8- x 1 8,求代数式 x yx - y- 2 xyx y - y x的值。解 :依据二次根式的定义 ,知 x- 8≥ 0 ,且 8- x≥ 0 ,∴ x=8,从而 y=1 8。∴原式 =x yx - y- 2 ( xy) 2xy( x - y )=( x - y ) 2x - y =x - y=8- 1 8=- 2 。三、用非负数性质求解例 3.如果 a b | c- 1 - 1 | =4a- 2 2 b 1 - 4,那么 a 2 b- 3c=。解 :将原条件式配方 ,得 ( a- 2 - 2 ) …  相似文献   

9.
根据题型数值结构特征 ,选用恰当的化简技巧 ,是解决课本二次根式题的关键。一、变换所求 ,以简改繁例 1 已知 x=12 (7+5 ) ,y=12 (7- 5 ) ,求 x2 - xy+ y2 的值。 (课本 P2 2 0第 7题 )解 :当 x =12 (7+5 ) ,y=12 (7- 5 )时 ,原式 =(x- y) 2 + xy   =(5 ) 2 + 14 (7- 5 )   =112 。二、化简变形 ,化难为易例 2 已知 x=3+ 23- 2,y= 3- 23+ 2,求 xy+ yx的值。 (课本 P2 2 1B组第 3题 )解 :∵ x=- 7- 43,y=- 7+ 4 3,∴ x+ y=- 14 ,xy=1。∴原式 =x2 + y2xy =(x+ y) 2 - 2 xyxy    =(- 14 ) 2 - 2× 1=194。三、变形凑零 ,捷足先登…  相似文献   

10.
1 设元代数 ,化已知为未知例 1 若x =12 2 0 0 2 - 12 0 0 2 ,求x2 1 x的值 .分析  2 0 0 2是一个较大、带根号的无理数 ,直接代入较复杂 ,尝试用字母换元代入 .解 设 y=2 0 0 2 ,则x =12 y - 1y ,x2 1=14 y 1y2 ,因为 y 1y >0 .所以原式 =14 y 1y2 12 y- 1y =12 y 1y 12 y- 1y =y =2 0 0 2 .例 2 计算36 33× 36 35 × 36 39× 36 41 36 -36 36 × 36 38.解 设 36 37=t,则原式 =(t - 4) (t- 2 ) (t 2 ) (t 4) 36- (t - 1) (t 1)=(t2 - 10 ) 2 - (t2 - 1)=t2 - 10 -t2 1=- 9.2 设元代式 ,无理变有理有些题目的…  相似文献   

11.
一、巧用平方法 ,整体代入求值。例 1.已知 nm mn =3 22 ,求nm mn的值。解 :由 nm mn=3 22 两边平方 ,得nm mn 2 =92 ,∴ nm mn=52 。∴ nm mn=52 =12 10。二、巧用过渡值 ,变形求值式 ,整体代入求值。例 2 .已知 x=2 - 12 1,y=2 12 - 1,求二次根式 x2 y2 16的值。解 :∵ x=2 - 12 1=3- 2 2 ,y=2 12 - 1= 3 2 2 , ∴ x y=6,xy=1。∴原式 =( x y) 2 - 2 xy 16=62 - 2× 1 16=50 =52。三、巧用非负数的性质 ,求出字母的值 ,直接代入求值。例 3.已知 x2 y2 - 6x- 2 y 10 =0。求 ( x y ) 2 - 4 xyx- xy的值。解 :把已知等式左端配方 ,…  相似文献   

12.
在解不等式问题时 ,调整系数、拆项、补项是常用技巧 .但调整系数、拆项、补项时 ,既要考虑不等式的结构 ,又要符合相关要求 ,难以直接确定 .此时若用待定系数法 ,就可兼顾几方面要求 ,只需求出待定系数就行了 .例 1 已知 :1≤ 3x+2 y≤ 3,2≤ x+3y≤5 ,求 5 x+8y的取值范围 .分析 用 3x+2 y及 x+3y将 5 x+8y表示出来是解题的关键 .设 5 x+8y=m(3x+2 y) +n(x+3y) =(3m+n) x+(2 m+3n) y(m,n为待定系数 ) .由 3m+n=5 ,2 m+3n=8,解得 m=1,n=2 .解  5 x+8y=(3x+2 y) +2 (x+3y) ,∵ 2≤x+3y≤ 5 ,∴ 4≤ 2 (x+3y)≤ 10 .又 1≤ 3x+2 y≤ 3,∴ …  相似文献   

13.
文 [1]用函数性质证明了第 31届西班牙数学奥林匹克第 31题 :如果 (x+x2 +1) (y+y2 +1) =1,那么 x+y=0 .该题可作如下的推广 :如果 (x+x2 +m) (y+y2 +m) =m,其中 m∈ (0 ,+∞ ) ,那么 x+y=0 .下面用构造法给出简证 .思路 1——构造对偶式证明 1 由已知 ,m>0 ,(x+x2 +m ) (y+y2 +m) =m,1令 (x- x2 +m) (y- y2 +m) =n,21× 2得 (- m) (- m) =mn,∴ n=m,即有 (x- x2 +m) (y- y2 +m) =m.3由 1得 x+x2 +m=my+y2 +m=- (y- y2 +m) . 4由 3得 x - x2 +m =my- y2 +m=- (y+y2 +m) . 54 +5得 2 x=- 2 y,∴x+y=0 .思路 2——构造等比数列证明 2  m >0 …  相似文献   

14.
一、利用根的代换求作一元二次方程例1 已知方程x~2—3x—2=0,不解方程,求作一个一元二次方程,使它的根分别是已知方程的各根的2倍. 解设已知方程的根为x,所要求作的方程的根为y. ∵y=2x,∴x=1/2y.  相似文献   

15.
二次根式求值问题是二次根式学习中常见的一种问题.解答它们,仅仅考虑常规的先化简后代入的方法有时很难奏效,必须巧用一些其他的方法. 一、巧用二次根式的定义 例1 已知x、y为实数,且满足√1+x-(y-1)√1-y=0,则x2011-y2011=______. 分析:由二次根式的定义,得√1 +x ≥0、√1-y≥0,那么y-1≥0.又1-y≥0,则y的值可以求出.随之,x的值也可以求出. 解:已知等式为√1+x=(y-1)√1-y. ∵√1+x≥0,√1-y≥0, ∴√y-1≥0,1-y≤0. 又∵1-y≥0, ∴1-y=0,y=1. 把y=1代入已知等式,得√1+x=0,x=-1. 则求式=(-1)2011-1=-2.  相似文献   

16.
一、整体换元法例1计算20+142√3√+20-142√3√.解:设20+142√3√+20-142√3√=x,两边立方,得20+142√+20-142√+3202-(142√)3√2(20+142√3√+20-142√√)=x3,∴x3-6x-40=0,∴(x-4)(x2+4x+10)=0.∵x2+4x+10=(x+2)2+6>0,∴x-4=0,∴x=4.故20+142√3√+20-142√3√=4.二、局部换元法例2解方程5x2+x-x5x2-1√-2=0.解:设y=5x2-1√,则原方程可化为y2+x-xy-1=0,∴(y-1)(y-x+1)=0,解得y=1或y=x-1.当y=1时,5x2-1√=1,解得x1,2=±10√5;当y=x-1时,5x2-1√=x-1,解得x3=12,x4=-1,经检验,x3=12,x4=-1是增根.故原方程的根是x1,2=±10√5.三、常值换元法…  相似文献   

17.
探索型1.解 :( 1)依题意可得 :x1+ x2 =2 ,x1· x2 =k由 y=( x1+ x2 ) ( x12 + x2 2 -x1x2 ) =( x1+ x2 ) [( x1+ x2 ) 2-3 x1x2 ] =2 ( 4 -3 k) =8-6k 即 y=8-6k.( 2 )∵方程有两实数根∴ Δ=b2 -4ac=4-4k≥ 0 .∴ k≤ 1.由此得 -6k≥ -6. ∴y=8-6k≥ 8-6=2 .即当 k=1时 ,y有最小值 2 ,没有最大值 .2 .( 1)解 :∵∠ BAC=∠ BCO,∠ BOC=∠ COA=90°,∴△ BCO∽△ CAO,∴ AOCO=COOB.∴ CO2 =AO· OB.由已知可得 :AO=| x1| =-x1,OB=| x2 | =x2 .∵ x1x2 =-m<0 ,∴ m>0 .∴ CO=m,AO· OB=m.∴ m2 =m,∴ m=1,m=0 (舍去 ) .∴…  相似文献   

18.
反函数是中学数学教材中的难点之一,在教学中我们常会遇到对反函数定义理解不深不透、解题思路不清、解答步骤不全等错误,严重影响学生对这部分知识的掌握.下面本人将以函数中常见的几种典型错误进行剖析,与同行磋商.误区一:忽视函数存在反函数的条件案例1函数y=x2(x∈R)是否存在反函数,若存在,求反函数;若不存在,说明理由.错解函数存在反函数.当x≥0时,由y=x2得x=y,所以x≥0时,反函数为y=x(x≥0);当x<0时,由y=x2得x=-y,所以x<0时,反函数为y=-x(x>0).剖析忽视函数存在反函数的条件,从而盲目地进行分类讨论求反函数.正解∵y=x2(x∈R)不是一一对应函数,∴y=x2不存在反函数.解后反思只有从定义域到值域上的一一映射所确定的函数才有反函数.误区二:错解反函数的解析式案例2求函数y=3x2-1(x≤0)的反函数的表达式.错解由y=3x2-1,得x2=(y+1)3,∴x=(y+1)3或x=-(y+1)3,∴反函数的表达式为y=(x+1)3或y=-(x+1)3.剖析在求解过程中没有考虑原函数中x≤0这个条件导致出现两个答案的错误.正解由y=3x2-1,得x2=(y+1)3,∵x≤0,∴x...  相似文献   

19.
一、选择题 1.350,440,5,0的大小关系是(). (A)350<4落o<530(B)530<350(440 (C)530<440<350(D)440<530<350 2.已知关于x的方程~十2~2(m一x)的解满足则m的值是().12(A,‘o或普(C,一‘O或普(B)10或 2 5,。、,。一2、。少一土U双一了3.设直角三角形的三边长分别为a、b、‘,若‘一b一b一a>o,则溉一( ‘A)音 4.若x十y十z一30,3x+y一z一50,x、y、z均为非负数,则M~sx十4y十22的取值范围是(). (A)100(M(110(B)110(M镇120 (C)120(M簇130(D)130(人夕簇140 5.如图l,若AB=AC,BG=BH,AK=KG,则艺BAC的度数为(). (A)300(B)320(C)360(D)40。 6…  相似文献   

20.
在学习二次函数、反比例函数时,有些同学常因概念不清、思维不周或理解不透而发生解题错误.现列举几例共同探究. 例1 已知抛物线y=(m-3)x2-2mx+m与x轴有两个交点,求m的取值范围. 错解:∵抛物线与轴有两个交点,∴△>0,即(-2m)2-4×(m-3)×m>0解得m>0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号