首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Word associations were used to map the conception of high school students concerning the concepts “chemical equilibrium” and “equilibrium.” It was found that the preconception of the two concepts was differentiated on noncritical dimensions; “equilibrium” being associated with everyday life experiences and “chemical equilibrium” with general chemical concepts. After studying the subject of chemical equilibrium at school the two concepts merged towards one, i.e., becoming synonymous. This can provide an explanation for misconceptions associated with chemical equilibrium via the transfer of static attributes from “equilibrium” to the dynamic “chemical equilibrium”.  相似文献   

3.
The aims of this study were to determine the underlying conceptual structure of the thermal concept evaluation (TCE) questionnaire, a pencil-and-paper instrument about everyday contexts of heat, temperature, and heat transfer, to investigate students’ conceptual understanding of thermal concepts in everyday contexts across several school years and to analyse the variables—school year, science subjects currently being studied, and science subjects previously studied in thermal energy—that influence students’ thermal conceptual understanding. The TCE, which was administered to 515 Korean students from years 10–12, was developed in Australia, using students’ alternative conceptions derived from the research literature. The conceptual structure comprised four groups—heat transfer and temperature changes, boiling, heat conductivity and equilibrium, and freezing and melting—using 19 of the 26 items in the original questionnaire. Depending on the year group, 25–55% of students experienced difficulties in applying scientific concepts in everyday contexts. Years of schooling, science subjects currently studied and physics topics previously studied correlated with development of students’ conceptual understanding, especially in topics relating to heat transfer, temperature scales, specific heat capacity, homeostasis, and thermodynamics. Although students did improve their conceptual understandings in later years of schooling, they still had difficulties in relating the scientific concepts to their experiences in everyday contexts. The study illustrates the utility of using a pencil-and-paper questionnaire to identify students’ understanding of thermal concepts in everyday situations and provides a baseline for Korean students’ achievement in terms of physics in everyday contexts, one of the objectives of the Korean national curriculum reforms.  相似文献   

4.
5.
This article examines how the Dual‐Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept “heat transfer: heat conduction and convection,” which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process. © 2004 Wiley Periodicals, Inc. J Res Sci Teach 41: 142–164, 2004  相似文献   

6.
We conducted two studies of beliefs about laboratory and everyday thermal phenomena. The first study identified concepts of heat energy and temperature held by adolescents, adults, and scientists. We found a classic separation of “school” and “everyday” knowledge in each population. We conducted clinical interviews with 37 middle school students, 9 adults, and 8 chemists and physicists to obtain their predictions and explanations of real-world phenomena. Many students believed that metals “conduct,” “absorb,” “trap,” or “hold” cold better than other materials and that aluminum foil would be better than wool or cotton as a wrapping material to keep cold objects cold. Respondents in each group held many intuitive ideas that were well established. Although scientists made more accurate predictions than students and gave theoretical definitions of terms, they too had difficulty explaining everyday phenomena. The second study investigated the impact of a middle school science curriculum designed to help students understand everyday thermal events. We found marked improvements in posttest scores and clinical interview responses as a result of instruction that built on students' intuitions.  相似文献   

7.
During the last two decades many researchers in mathematics and science education have studied students’ conceptions and ways of reasoning in mathematics and science. Most of this research is content‐specific. It was found that students hold alternative ideas that are not always compatible with those accepted in science. It was suggested that in the process of learning science or mathematics, students should restructure their specific conceptions to make them conform to currently accepted scientific ideas. In our work in mathematics and science education it became apparent that some of the alternative conceptions in science and mathematics are based on the same intuitive rules. We have so far identified two such rules: “More of A, more of B”, and “Subdivision processes can always be repeated”. The first rule is reflected in subjects’ responses to many tasks, including all classical Piagetian conservation tasks (conservation of number, area, weight, volume, matter, etc.) in all tasks related to intensive quantities (density, temperature, concentration, etc.) and in all tasks related to infinite quantities. The second rule is observed in students’, preservice and inservice teachers’ responses to tasks related to successive division of material and geometrical objects and in seriation tasks. In this paper, we describe and discuss these rules and their relevance to science and mathematics education.  相似文献   

8.
Our research project was guided by the assumption that students who learn to understand phenomena in everyday terms prior to being taught scientific language will develop improved understanding of new concepts. We used web‐based software to teach students using a “content‐first” approach that allowed students to transition from everyday understanding of phenomena to the use of scientific language. This study involved 49 minority students who were randomly assigned into two groups for analysis: a treatment group (taught with everyday language prior to using scientific language) and a control group (taught with scientific language). Using a pre–post‐test control group design, we assessed students' conceptual and linguistic understanding of photosynthesis. The results of this study indicated that students taught with the “content‐first” approach developed significantly improved understanding when compared to students taught in traditional ways. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 529–553, 2008  相似文献   

9.
This study tested the mediating role of self‐directed learning skills (SDL) between students’ conceptions of mathematics and their achievement in mathematics using a structural equation model. Data were collected using the “Conceptions of Mathematics Questionnaire” and the “Self‐Rating Scale of Self‐Directed Learning”, together with students’ achievement in mathematics. A sample of 440 first year university students at King Saud University participated in the study. The findings confirm the moderating role of students’ self‐directed learning skills between their conceptions of mathematics and their achievement in mathematics. Students who have a highly fragmented conception of mathematics tended to have low SDL skills, and in turn low mathematics achievement (partial mediation), whereas students who have a highly cohesive conception of mathematics tended to have high self‐directed learning skills, and in turn high mathematics achievement (full mediation). Mathematics educators should be aware that students’ conceptions of mathematics may be influential, but not sufficient to predict achievement in mathematics. Equipping students with appropriate conceptions of mathematics and self‐directed learning skills is key to enhancing their performance in mathematics.  相似文献   

10.
11.
To enhance the learning outcomes achieved by students, learners undertook a computer‐simulated activity based on an acid–base titration prior to a university‐level chemistry laboratory activity. Students were categorized with respect to their attitudes toward learning. During the laboratory exercise, questions that students asked their assistant teachers were used as indicators of cognitive focus. During the interviews, students' frequency and level of “spontaneous” use of chemical knowledge served as an indicator of knowledge usability. Results suggest that the simulation influenced students toward posing more theoretical questions during their laboratory work and, regardless of attitudes, exhibiting a more complex, correct use of chemistry knowledge in their interviews. A more relativistic student attitude toward learning was positively correlated with interview performance in both the control and treatment groups. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 1108–1133, 2007  相似文献   

12.
Engineering students in control courses have been observed to lack an understanding of equilibrium and stability, both of which are crucial concepts in this discipline. The introduction of these concepts is generally based on the study of classical examples from Newtonian mechanics supplemented with a control system. Equilibrium and stability are approached in different ways at the various stages of a typical engineering syllabus: at the beginning, they are mostly dealt with a static point of view, for example in mechanics, and are subsequently handled through dynamic analysis in control courses. In general, there is a little clarification of the differences between these concepts or the ways in which they are linked. We believe that this leads to much confusion and incomprehension among engineering students. Several studies have shown that students encounter difficulties when presented with simple familiar or academic static equilibrium cases in mechanics. Our study investigates students’ conceptions and misconceptions about equilibrium and stability through a series of questions about several innovative non-static situations. It reveals that the understanding of these notions is shaken when the systems being studied are placed in inertial or non-inertial moving reference frames. The students in our study were particularly uncertain about the existence of unstable equilibrium positions and had difficulty in differentiating between the two concepts. The results suggest that students use a velocity-based approach to explain such situations. A poor grasp of the above fundamental concepts may result from previous learning experiences. More specifically, certain difficulties seem to be directly linked to a lack of understanding of these concepts, while others are related to misconceptions arising from everyday experiences and the inappropriate use of physical examples in primary school.  相似文献   

13.
This study investigates the various conceptions held by K‐8th Korean grade students regarding the ‘changes of state’ and the ‘conditions for changes of state’. The study used a sample of five kindergarteners, five secondgrade students, five fourth‐grade students, five sixth‐grade students, and five eighth‐grade students. The 25 students attend schools in a rural district of South Korea. Some activities that involved a change in the state of water, including condensation, solidification, and melting, were chosen from K‐8th grade science textbooks and attempted by the students. Subsequently, we conducted interviews with the students. While most kindergarteners and second‐grade students were able to perceive the phenomena involving changes of state, they were unable to express conceptions related to the changes of state and the conditions under which the state the changes. The upper‐grade students, on the other hand, had some conception of the invisible gas state. Most of these students held conceptions about the boiling water's change of state from liquid to gas, but few of them held conceptions about the changes of state involving condensation. Most students understood heat and temperature as conditions of the changes of state, but only applied the heat concept to situations involving rising temperatures. In situations involving cooling, students applied the temperature concept. The younger students understood the concept of heat without understanding the concept of temperature.  相似文献   

14.
In this work, we propose to identify the knowledge that Tunisian grade 10 students build up concerning acids and bases. Thus, after learning, we have proceeded by giving a paper and pencil task to students of two levels of teaching. The results obtained allow us to say that the assimilated knowledge is transitory; that the students have a worse perception of the base than of the acid concept and these two concepts are independent; that they associate the acid or base strength to its concentration; that the pH is far from being a “tool” of estimation of the degree of acidity; and that the students have difficulty in linking the empirical and the models’ registers. Moreover, some alternative conceptions that can be harmful to the learning of Brønsted’s model appear.  相似文献   

15.
Although the term “radiation” has a fixed place in everyday life as well as in the media, there is very little empirical research on students’ conceptions about this topic. In our study we wanted to find out what students associate with this term. In 2009, we asked 509 students (between grade 4 and grade 6) from seven different schools to draw pictures related to “radiation”. This method of children’s drawings was supported by short interviews (n?=?74). The motifs appearing in the drawings were analysed, and we investigated whether or not the age and the sex of the children had any influence on the choice of motifs. One major result was that the older the students were, the more likely they were to choose sources of invisible radiation (nuclear power plants, mobile phones) as their motifs. Nine months after the tragic events in Fukushima (and at the same time 2 years after the 2009 data collection), we replicated the study. This time, we received 516 drawings from the same schools as in the 2009 study (supported by 33 interviews). This replicative trend study made it possible to compare the choice of motifs and discover possible differences. The results of this analysis showed that the drawings of 2011 included significantly more motifs related to radioactivity. This difference was prevalent in the drawings regardless of sex or age differences. Direct references to the Fukushima accident could be found in both the drawings and interviews.  相似文献   

16.
This study explored the structural relationships among secondary school students’ conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for investigating 333 Chinese high school learners’ conceptions, metacognitive self-regulation, and strategies in science. The confirmatory factor analysis results verified the validity of the three surveys. Moreover, the path analyses revealed a series of interesting findings. Learners with lower-level COLS, namely “memorizing,” “testing,” and “practicing and calculating,” tended to use surface learning strategies such as “minimizing scope of the study” and “rote learning.” However, learners’ higher-level COLS, namely “increase of knowledge,” “applying,” “understanding,” and “seeing in a new way,” had complicated connections with their SROLS and SLS. On the one hand, learners’ higher-level COLS had negative relations to “minimizing scope of the study” and “rote learning.” On the other hand, their higher-level COLS were powerful predicators for their metacognitive self-regulation and further affected their use of “deep strategy” and “rote learning.” Though Chinese secondary students with higher-level COLS usually have a negative view of “rote learning,” the functioning of their metacognitive self-regulation may change their initial attitudes towards the surface strategy. Learners with higher-level COLS still used “rote learning” as a prior step for achieving deep learning. Therefore, we concluded that the SROLS played an important mediating role between the COLS and SLS and may change learners’ original intention to utilize learning strategies.  相似文献   

17.
This paper reviews astronomy education research carried out among school students, teachers, and museum visitors over a 35‐year period from 1974 until 2008. One hundred and three peer‐reviewed journal articles were examined, the majority of whose research dealt with conceptions of astronomical phenomena with 40% investigating intervention activities. We used a conceptual framework of “big ideas” in astronomy, five of which accounted for over 80% of the studies: conceptions of the Earth, gravity, the day–night cycle, the seasons, and the Earth–Sun–Moon system. Most of the remaining studies were of stars, the solar system, and the concepts of size and distance. The findings of the review have implications for the future teaching of, and research in, the discipline. Conceptions of the Earth and the day–night cycle are relatively well‐understood, especially by older students, while the Moon phases, the seasons, and gravity are concepts that most people find difficult both to understand and explain. Thoroughly planned interventions are likely to be the most effective way of implementing conceptual change, and such studies have been well‐researched in the past 15 years. Much of this recent research has worked with constructivist theories resulting in methodological and theoretical insights of value to researchers and practitioners in the field. It is recommended that future research should work across the disciplinary boundaries of astronomy education at school and teacher education levels, and aim to disseminate findings more effectively within the education systems.  相似文献   

18.
Let's face it. Traditional lectures do not consistently capture our students’ attention, especially when they are PowerPoint‐driven and lack student/instructor interaction. Most of us have had the unfortunate feeling that our students were not fully engaged in our lectures, despite hours of preparation on our part. This sense of “wasted” investment of time can be especially frustrating for pretenure faculty, who must balance teaching, research, extension and administrative (as well as personal) responsibilities in order to be successful. How can we engage students in our course content, given limited time and resources to prepare lecture material and demonstrations? Active learning strategies are a possibility, but shifting courses from a lecture format to problem‐based learning or a flipped format requires a significant time and effort investment from the instructor. Why not start by making lecture more fun and engaging for our students? Storytelling is an effective and efficient means of getting and maintaining our students’ attention and interest during lecture to drive home key points. The BSCS (Biological Sciences Curriculum Study) 5E Instructional Model provides a conceptual framework that emphasizes the primacy of student engagement in science education (Bybee). Our goal here is to provide practical examples and external references to show how “Headlines First!” storytelling can be used effectively to engage students in the science classroom.  相似文献   

19.
One of the factors affecting students' learning in science is their existing knowledge prior to instruction. The students' prior knowledge provides an indication of the alternative conceptions as well as the scientific conceptions possessed by the students. This study is concerned primarily with students' alternative conceptions and with instructional strategies to effect the learning of scientific conceptions; i.e., to effect conceptual change from alternative to scientific conceptions. The conceptual change model used here suggests conditions under which alternative conceptions can be replaced by or differentiated into scientific conceptions and new conceptions can be integrated with existing conceptions. The instructional strategy and materials were developed for a particular student population, namely, black high school students in South Africa, using their previously identified prior knowledge (conceptions and alternative conceptions) and incorporate the principles for conceptual change. The conceptions involved were mass, volume, and density. An experimental group of students was taught these concepts using the special instructional strategy and materials. A control group was taught the same concepts using a traditional strategy and materials. Pre- and posttests were used to assess the conceptual change that occurred in the experimental and control groups. The results showed a significantly larger improvement in the acquisition of scientific conceptions as a result of the instructional strategy and materials which explicitly dealt with student alternative conceptions.  相似文献   

20.
Conceptions of fair educational practices develop differently for testing and learning situations. After about age 8, children judged peer tutoring to be an unfair practice during a test. (Most 6–8-year-olds judged it fair). Yet, peer tutoring was seen as the most fair way to help students learn until at least age 17. In addition, 4 levels of conceptions of fair testing practices were found. Adult-like conceptions of fair testing practices emerged at about age 11, which contrasts with about 18 for conceptions of fair learning practices. Conceptions of fair testing practices parallel the development of the concepts of ability and effort as factors limiting immediate performance; whereas conceptions of fair learning practices parallel the development of concepts concerning the long-term acquisition of intelligence. These findings support the conclusion that children's understanding of different types of situations is reflected in their conceptions of social justice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号