首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of this study were to examine self‐efficacy and other motivation variables among high school science students (n = 502); to determine the degree to which each of the four hypothesized sources of self‐efficacy makes an independent contribution to students' science self‐efficacy beliefs; to examine possible differences between life, physical, and Earth science classes; and to investigate patterns of gender differences that may vary among the fields of science. In Earth science classes, girls earned higher grades and reported stronger science self‐efficacy. In life science classes, girls earned higher grades but did not report stronger self‐efficacy, and did report higher science anxiety. In physical science, there were no gender differences in grades or self‐efficacy, but girls again reported higher levels of science anxiety. For boys across science fields, science self‐efficacy significantly predicted course grades and mastery experiences was the only significant predictor of self‐efficacy. For girls, self‐efficacy was also the strongest predictor of science grade across fields. Mastery experiences significantly predicted self‐efficacy in Earth science for girls, but social persuasions, vicarious experiences, and physiological states were better predictors of science self‐efficacy in life and physical science classes. Results support (Bandura, A., 1997) hypothesized sources of self‐efficacy, previous research findings on self‐efficacy in the domain of science, and validate the suggestion made by Lau and Roeser (2002) to disaggregate data by science field. © 2008 Wiley Periodicals, Inc. J Res Sci Teach 45: 955–970, 2008  相似文献   

2.
This paper reports on research undertaken in a middle-class Australian school. The focus of the research was on the relationship between gender and students’ engagement with high school chemistry. Achievement data from many OECD countries suggest that middle-class girls are achieving equally as well as, if not better than, boys in many subjects. This has led to claims that the ‘girls and science’ agenda is no longer necessary, and indeed may have been detrimental to boys’ achievements in science subjects. The data collected from students at this site indicate that at this school this agenda is far from a completed one. These data indicate that whilst girls’ achievement levels are comparable with those of the boys, for many students chemistry is still perceived as a masculine subject. Hence, the girls in the chemistry classrooms at this school construct themselves, and are constructed, as outsiders in the subject.  相似文献   

3.
This project reexamined young children's gender attitudes regarding occupational roles. The results of this study suggested that young children's atitudes, while still generally stereotypic, were more flexible regarding occupational roles. The reading of carefully selected books and book related activities positively influenced gender attitudes.  相似文献   

4.
This study demonstrates the potential for collaborative research among participants in local settings to effect positive change in urban settings characterized by diversity. It describes an interpretive case study of a racially, ethnically, and socioeconomically diverse eighth grade science classroom in an urban magnet school in order to explore why some of the students did not achieve at high levels and identify with school science although they were both interested in and knowledgeable about science. The results of this study indicated that structural issues such as the school's selection process, the discourses perpetuated by teachers, administrators, and peers regarding “who belongs” at the school, and negative stereotype threat posed obstacles for students by highlighting rather than mitigating the inequalities in students' educational backgrounds. We explore how a methodology based on the use of cogenerative dialogues provided some guidance to teachers wishing to alter structures in their classrooms to be more conducive to all of their students developing identities associated with school science. Based on the data analysis, we also argue that a perspective on classrooms as communities of practice in which learning is socially situated rather than as forums for competitive displays, and a view of students as valued contributors rather than as recipients of knowledge, could address some of the obstacles. Recommendations include a reduced emphasis on standardized tasks and hierarchies, soliciting unique student contributions, and encouraging learning through peripheral participation, thereby enabling students to earn social capital in the classroom. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 1209–1228, 2010  相似文献   

5.
Our main goal in this study was to determine whether the use of computer animation and illustration activities in high school can contribute to student achievement in molecular genetics. Three comparable groups of eleventh‐ and twelfth‐grade students participated: the control group (116 students) was taught in the traditional lecture format, whereas the experimental groups received instructions that integrated a computer animation (61 students) or illustration (71 students) activities. We used three research instruments: a multiple‐choice questionnaire; an open‐ended, written questionnaire; and personal interviews. Five of the multiple‐choice questions were also given to students before they received their genetics instruction (pretest). We found that students who participate in the experimental groups improved their knowledge in molecular genetics compared with the control group. However, the open‐ended questions revealed that the computer animation activity was significantly more effective than the illustration activity. On the basis of these findings, we conclude that it is advisable to use computer animations in molecular genetics, especially when teaching about dynamic processes; however, engaging students in illustration activities can still improve their achievement in comparison to traditional instruction. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 273–292, 2008  相似文献   

6.
Elementary and secondary students spend more hours outside of class than in formal school and thus have more time for interaction with everyday science. However, evidence from a large international survey, Program of International Student Assessment (PISA) (OECD 2012), found a negative relationship between number of hours attending after-school science and science assessment scores in many countries, raising questions about why. The secondary analysis of the 2006, 2009, and 2012 PISA surveys found that in most Western countries the longer students attended after-school science programs (in a typical week), the lower their PISA standardized science test score, but the higher their positive attitudes toward future science careers, interest in science, and self-confidence in science. Several potential hypotheses for this relationship are examined and rejected. Further analysis of a causal relationship between frequent attendance in after-school programs and student achievement and attitudes should clearly identify the content of the program so that the analysis could distinguish experiences closely related to regular school curricula from the informal science activities that are not. A new analysis also should include carefully designed longitudinal surveys to test the effectiveness of informal experiences on later life choices in career and study.  相似文献   

7.
This study examined the nature of science (NOS) views of lower elementary grade level students, including their views of scientists. Participants were 23 third‐grade African American students from two Midwest urban settings. A multiple instrument approach using an open‐ended questionnaire, semi‐structured interviews, a modified version of the traditional Draw‐A‐Scientist Test (DAST), and a simple photo eliciting activity, was employed. The study sought to capture not only the students' views of science and scientists, but also their views of themselves as users and producers of science. The findings suggest that the young African American children in this study hold very distinct and often unique views of what science is and how it operates. Included are traditional stereotypical views of scientists consistent with previous research. Additionally, participants expressed excitement and self‐efficacy in describing their own relationship with science, in and outside of their formal classrooms. Implications for teaching and learning NOS as it relates to young children and children of color are discussed. © 2011 Wiley Periodicals, Inc. J Res Sci Teach 49: 1–37, 2012  相似文献   

8.
Academic self-concept is positively related to individual achievement but negatively related to class- or school-average achievement: the big-fish–little-pond effect (BFLPE). This contrast effect results from social comparison processes. The BFLPE is known to be long-lasting, universal and robust. However, there is little evidence regarding its generalisability across genders. Females, as opposed to males, feel more attached to their peers and compare themselves more often. Thus, it was hypothesised that the BFLPE is larger for females. This was investigated with a focus on science self-concept in a German sample from an extension of the Programme for International Student Assessment 2006 study (N?=?35,015) using recent advances in multilevel modelling. Replicating previous findings, females reported lower self-concepts while controlling for achievement. Additionally, the BFLPE was replicated. However, its effect size was substantially larger for females (?.41) compared to males (?.30). The implications of the results are discussed in light of women’s persisting underrepresentation in science, technology, engineering and mathematics fields.  相似文献   

9.
In a technologically driven society, math and science students in the United States are falling further and further behind their international counterparts, resulting in an influx of STEM focused, reformed K-12 schools, including schools focused on project-based learning (PBL). This article reports a study of the effectiveness of PBL on high school students' performance on state mandated standardized mathematics and science achievement measures. Manor New Tech High School is a nationally recognized model STEM school, with a diverse student population, where all instruction is delivered through PBL. Although there is ample research suggesting that PBL is advantageous for increasing STEM learning compared to conventional teaching approaches, there is a lack of studies randomly assigning students to receive PBL. Further, some of the effects observed for students attending project-based schools could be due to a self-selection bias for students or parents that choose such an alternative learning environment. This study addresses both of these concerns and found that students taught through PBL, as a group, matched performance of conventionally taught students on all science 11th grade and mathematics 9th, 10th, and 11th grade TAKS achievement measures and exceeded performance by a scale score increase of 133 for the 10th grade science TAKS measure by (B = 133.082, t = 3.102, p < .05). One possible explanation of the differences observed in this study could be the TAKS instrument used to capture student math and science achievement that interprets “real-life applications” of content differently between math and science questions. These results align with literature on the effects of PBL and deepen our understanding of these effects by providing a controlled study with random assignments to the PBL experience. Future research looking at the effect of PBL on achievement on the PISA could be beneficial in identifying benefits of PBL implementation in schools.  相似文献   

10.
Nearly 6,000 science questions collected from five different web‐based, TV‐based and school‐based sources were rigorously analyzed in order to identify profiles of K‐12 students' interest in science, and how these profiles change with age. The questions were analyzed according to their topic, thinking level, motivation for and level of autonomy in raising the question, the object of interest and its magnitude, and psychological distance of the object in question from the asker. Characteristics of the asker, such as gender, grade level, and country of origin were also considered, alongside characteristics of the data source, such as language, setting (Internet, school, TV), and the potential science‐attentiveness of the users. Six meta‐clusters of children's and adolescents' interest in science were identified using cluster analysis of their self‐generated science questions. A developmental shift in interest from non‐classical to classical school science subjects was noted. Other age‐related developments, such as an increase in thinking level as reflected by the questions, a decrease in organization level and the psychological distance of the object in question with age were also explored. Advantages and shortcomings of web‐based data collection for educational research are discussed, as are the implications of the results obtained using this methodology for formal science education. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 46: 999–1022, 2009  相似文献   

11.
A theoretical model of nonscience majors' motivation to learn science was tested by surveying 369 students in a large‐enrollment college science course that satisfies a core curriculum requirement. Based on a social‐cognitive framework, motivation to learn science was conceptualized as having both cognitive and affective influences that foster science achievement. Structural equation modeling was used to examine the hypothesized relationships among the variables. The students' motivation, as measured by the Science Motivation Questionnaire (SMQ), had a strong direct influence on their achievement, as measured by their science grade point average. The students' motivation was influenced by their belief in the relevance of science to their careers. This belief was slightly stronger in women than men. Essays by the students and interviews with them provided insight into their motivation. The model suggests that instructors should strategically connect science concepts to the careers of nonscience majors through such means as case studies to increase motivation and achievement. © 2006 Wiley Periodicals, Inc. J Res Sci Teach 44: 1088–1107, 2007  相似文献   

12.
Meaningful participation in science and engineering practices requires that students make their thinking visible to others and build on one another's ideas. But sharing ideas with others in small groups and classrooms carries social risk, particularly for students from nondominant groups and communities. In this paper, we explore how students' perceptions of classrooms shape their contributions to classroom knowledge building in science across a wide range of classrooms. We examine the claim that when students feel a sense of belonging in class, they contribute more and perceive their ideas to be more influential in knowledge building. Data comes from classroom exit tickets (n = 10,194) administered in 146 classrooms as part of a 10-state field test of a new middle-school science curriculum, OpenSciEd, which were analyzed using mixed effects models. We found that students' sense of belonging predicted the degree to which they contributed ideas out loud in class (Odds ratio = 1.57) as well as the degree to which they perceived their contributions as influencing others (Odds ratio = 1.53). These relationships were particularly strong for students who reported a lower a sense of belonging. We also found significant differences by both race and gender in whether students said they contributed and believed their ideas influenced those of others. These findings suggest that a learner's sense of belonging in class and willingness to contribute may be mutually reinforcing, highlighting the need to promote content-specific strategies to foster belonging in ways that support collaborative knowledge building.  相似文献   

13.
A science achievement model was separately investigated for students in low and high achieving schools (LAS and HAS) in Turkey. Then, gender differences based on variables that significantly contributed to each achievement model were investigated. The student-level variables that were under investigation for multiple regression analyses include attitudes toward science, epistemological beliefs, metacognition, views on science teaching, and socioeconomic status (SES). The science achievement scores of students on a nationwide exam were used to measure science achievement. Both for LAS and HAS, two schools were selected. Results were reported for 241 and 320 students in LAS and HAS, respectively. According to the results, self-concept in science, knowledge of cognition, SES, importance of science, gradual learning, and views on lab work significantly contributed to the science achievement model in LAS. On the other hand, self-concept in science, SES, gradual learning, studying, and learning science in school significantly contributed to the science achievement model in HAS. Results also revealed that girls outperformed boys on knowledge of cognition and importance of science in LAS. Moreover, girls scored higher than boys on gradual learning and studying in HAS. According to these findings, implications for science education were discussed.  相似文献   

14.
We conducted a laboratory‐based randomized control study to examine the effectiveness of inquiry‐based instruction. We also disaggregated the data by student demographic variables to examine if inquiry can provide equitable opportunities to learn. Fifty‐eight students aged 14–16 years old were randomly assigned to one of two groups. Both groups of students were taught toward the same learning goals by the same teacher, with one group being taught from inquiry‐based materials organized around the BSCS 5E Instructional Model, and the other from materials organized around commonplace teaching strategies as defined by national teacher survey data. Students in the inquiry‐based group reached significantly higher levels of achievement than students experiencing commonplace instruction. This effect was consistent across a range of learning goals (knowledge, reasoning, and argumentation) and time frames (immediately following the instruction and 4 weeks later). The commonplace science instruction resulted in a detectable achievement gap by race, whereas the inquiry‐based materials instruction did not. We discuss the implications of these findings for the body of evidence on the effectiveness of teaching science as inquiry; the role of instructional models and curriculum materials in science teaching; addressing achievement gaps; and the competing demands of reform and accountability. © 2009 Wiley Periodicals, Inc. J Res Sci Teach 47:276–301, 2010  相似文献   

15.
Background:?Cooperative learning may help students elaborate upon problem information through interpersonal discourse, and this may provoke a higher level of thinking. Interaction stimulates students to put forward and order their thoughts, and to understand the ideas or questions of their peer learner. However, partner gender is an important variable in cooperative learning. Previous research indicates that female students profit less than male students from mixed-gender cooperative learning in physics, especially where problem-solving is involved. Female and male students have different communication styles. For example, male students tend to give their opinions and explanations directly, while females tend to avoid presenting their opinion and are more likely to initiate cooperative problem-solving by asking questions.

Purpose:?The main aim of this study was to ascertain whether partner gender influences female students' learning to solve science problems and the role female communication style plays in the cooperative learning process.

Sample:?A total of 62 high schools students (31 female, 31 male) from three schools in the Netherlands participated in the study. Students were selected from three physics classes in grade 10, with a mean age of 15.6. Students came from various family backgrounds.

Design and methods:?An experiment was carried out to test the effect of group composition on female and male students' cooperative problem-solving in science. The students were randomly assigned to dyads and three research conditions: 15 mixed-gender pairs (MG); eight female–female pairs (FF) and eight male–male pairs (MM). Students were given training in how to solve a problem as a team, and how to complete the answer sheet. All students solved the same problems in four 50-minute sessions. In each session, students were asked to solve three new and moderately structured problems working together. Each dyad had a university student as an observer. The observer's task was to log the students' time on task and to document the interactions between the students. The observers did not interfere with the communication between the students during problem-solving.

Results:?Analyses of pre- and post-test performance revealed that female students in the MG condition did not learn to solve physics problems as well as male partners or as female students in all-female dyads. Analyses of interactive behaviours showed that female students in the MG condition devoted less time to actively seeking solutions and spent more time asking questions than their male partners.

Conclusions:?Difference in solution-seeking behaviour could explain an important part of the difference in problem-solving performance between the female and male students in this study. Female students in the all-female dyads did not differ in interactive behaviour or post-test performance from males. They had a more balanced interactive style than females in the mixed-gender dyads. Suggestions for further research are discussed. It would be interesting to examine if the findings of this study carried over to areas in which females are traditionally more comfortable, such as biology.  相似文献   

16.
Relying on the results of the achievement tests in mathematics, science, native language (Hebrew/Arabic) and English, administered to 1430 5th-grade co-educational classes in Israel, this study examines the between-class variability of the within-class mean score gender differences and its class and school correlates. The four main results of the study are: (1) remarkable between-test stability of the within-class gender gap; (2) considerable variability of the within-class gender gap, in terms of both sign and magnitude, found for each of the four tests: children studying in different classes are exposed to different, sometimes quite opposite, gender differences and this variability is effectively masked by the aggregate-level analyses typically reported in the literature; (3) the lion’s share of the variability of the within-class gender gap lies within, rather than between schools; and (4) the relative frequency of within-class gender gaps favouring boys is positively related to school-level characteristics, which qualify as positive indicators of the school’s quality and negatively to class size. The within- and between-sector (Arab vs. Jewish) components of this relation are discussed.  相似文献   

17.
Despite the fact that computer science (CS) is the driver of technological innovations across all disciplines and aspects of our lives, including participatory media, high school CS too commonly fails to incorporate the perspectives and concerns of low-income students of color. This article describes a partnership program – Exploring Computer Science (ECS) – that directly counters this problem in our nation's second largest school district. With a mission of democratizing CS learning, we argue that despite the constraints of working within public schools, it is imperative to do so. We discuss the ECS program based on inquiry, culturally relevant curriculum, and equity-oriented pedagogy. We describe two ECS-affiliated projects that highlight the importance of authorship, purpose, and agency for student learning and engagement: DietSens using mobile technology to study community health, and a project in which students create video games about social issues. Our work offers a counter-narrative to those who have written off the possibilities of working within public schools and a debunking of the too widespread myth within our educational system that females and students of color are inherently uninterested in rigorous CS learning.  相似文献   

18.
This study asked elementary school teachers how educational policies affected their science instruction with a majority of English language learners. The study employed a questionnaire followed by focus group interviews with 43 third and fourth grade teachers from six elementary schools in a large urban school district with high populations of English language learners in the southeastern United States. Results indicate that teachers' opinions concerning all areas of policy evolved as the state enforced stronger measures of accountability during the 2‐year period of the study. Although relatively positive regarding standards, their opinions became increasingly negative regarding statewide assessment, and even more so toward accountability measured by reading, writing, and mathematics. The results suggest that it is important to understand how teachers perceive the influence of policies, particularly those relating to English language learners, as science accountability becomes more imminent across the states. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 725–746, 2007  相似文献   

19.
Sexual health is a controversial science topic that has received little attention in the field of science education, despite its direct relevance to students' lives and communities. Moreover, research from other fields indicates that a great deal remains to be learned about how to make school learning about sexual health influence the real‐life choices of students. In order to provide a more nuanced understanding of young people's decision‐making, this study examines students' talk about sexual health decision‐making through the lens of identities. Qualitative, ethnographic research methods with twenty 12th grade students attending a New York City public school are used to illustrate how students take on multiple identities in relation to sexual health decision‐making. Further, the study illustrates how these identities are formed by various aspects of students' lives, such as school, family, relationships, and religion, and by societal discourses on topics such as gender, individual responsibility, and morality. The study argues that looking at sexual health decision‐making—and at decision‐making about other controversial science topics—as tied to students' identities provides a useful way for teachers and researchers to grasp the complexity of these decisions, as a step toward creating curriculum that influences them. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47:742–762, 2010  相似文献   

20.
In this study, we analyzed the quality of students' written scientific explanations found in notebooks and explored the link between the quality of the explanations and students' learning. We propose an approach to systematically analyzing and scoring the quality of students' explanations based on three components: claim, evidence to support it, and a reasoning that justifies the link between the claim and the evidence. We collected students' science notebooks from eight science inquiry‐based middle‐school classrooms in five states. All classrooms implemented the same scientific‐inquiry based curriculum. The study focuses on one of the implemented investigations and the students' explanations that resulted from it. Nine students' notebooks were selected within each classroom. Therefore, a total of 72 students' notebooks were analyzed and scored using the proposed approach. Quality of students' explanations was linked with students' performance in different types of assessments administered as the end‐of‐unit test: multiple‐choice test, predict‐observe‐explain, performance assessment, and a short open‐ended question. Results indicated that: (a) Students' written explanations can be reliably scored with the proposed approach. (b) Constructing explanations were not widely implemented in the classrooms studied despite its significance in the context of inquiry‐based science instruction. (c) Overall, a low percentage of students (18%) provided explanations with the three expected components. The majority of the sample (40%) provided only claims without any supporting data or reasoning. And (d) the magnitude of the correlations between students' quality of explanations and their performance, were all positive but varied in magnitude according to the type of assessment. We concluded that engaging students in the construction of high quality explanations may be related to higher levels of student performance. The opportunities to construct explanations in science‐inquiry based classrooms, however, seem to be limited. © 2010 Wiley Periodicals, Inc. J Res Sci Teach 47: 583–608, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号