首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

2.
大家知道如下的一个基本关系:若 f(a,b)=0,则点(a,b)必在方程 f(x,y)=0的曲线上.比如,由 a~2 b~2=1,我们可以得出:1°,点(a,b)在圆 x~2 y~2=1上;2°,点(a,b~2)在抛物线 x~2 y=1;3°,点(a~2,b~2)在直线上 x y=1上;4°,点(a,b)在直线 ax by=1上,等等.在解题中,  相似文献   

3.
遇到解析几何题,通常是从有关概念、定式(如公式、法则以及曲线标准方程等)和定法(即教材中介绍的基本方法)着手进行思考分析,寻求解题对策,虽一般能奏效,但有时会出现解题过程复杂甚至难以处理的局面.此时,若能针对问题的不同情况,采取一些非常规的解题方法去分析思考,常能将问题变繁为简,化难为易.1 曲线方程的非标准化处理例1 已知抛物线C:y2=2ax(a<0),过点(-1,0)作直线l交抛物线C于A、B两点,是否有以AB为直径且过抛物线C的焦点F的圆?分析 一般设直线l的点斜式方程y=k(x 1)(k≠0),代入方程y2=2ax,整理得k2x2 (2k2-2a)x k2=0.若存…  相似文献   

4.
讨论了直线XOXa2-yoyb2=1与双曲线x2a2-y2b2=1;直线x0xa2+y0yb2=1与椭圆x2a2+y2b2=1;直线y0y=p(x+x0)与抛物线y2=2px的位置关系。  相似文献   

5.
对典型习题要构建自己的习题网络培养自己的思维模式,在建网过程中可深悟知识、练铸能力.一、一个常见问题的两种解法的比较问题:过抛物线y2=2px(p>0)的焦点F作一直线l交抛物线于A(x1,y1)、B(x2,y2)两点,则A、B的坐标之间有什么关系?解1:设直线l为y=k(x-2p)或x=2p.有x1 x2=p 2kp2或p;x1·x2=p42;y1 y2=2kp或0;y1y2=-p2解2:设直线l为x=ny 2p,x1 x2=2pn2 p;x1·x2=p42;y1 y2=2pn;y1·y2=-p2;说明:(1)解法1要讨论两种情况,这里选择解2的直线方程形式“x=ny 2p”可以表示过点F的除x轴以外的直线,避免对直线方程形式的讨论,一般有关过x轴上的…  相似文献   

6.
一、鼓励参与,培养主体意识数学教学的本质是数学思维活动的教学,教师是全部教学活动的组织者.如我在复习曲线对称问题时,提出问题:(1)点(x,y)关于点(a,b)的对称点坐标是什么?曲线f(x,y)=0关于点(a,b)的对称曲线是什么?由学生思考、学生回答、教师讲解.(2)设抛物y=x~2-1上存在关于直线L:x+y=0对称的相异两点,求这两点坐标.师生共同分析点关于直线对称问题的一般解法及特殊直线的特殊求法,由学生解答.(3)若改y=x~2-1为y=(1/2)x~2-1,抛物线上是否还存在关于直线对称的两  相似文献   

7.
熟练地运用设而不求法求解析几何问题,能避免繁杂运算、简化解题过程,使解题收到事半功倍的效果.现归纳解析几何中运用设而不求法解题的几种方法如下:1利用元素的整体结构解题过程中,不直接求出所设元素,而抓住元素的整体结构,能有效地减少运算量,使解题化繁为简.1.1利用点的坐标的整体结构例1已知抛物线y2=4x,过点P(1,3)作直线l交物线于A,B两点,使P恰为弦AB的中点,求直线l的方程.解设A(x1,y1),B(x2,y2).因为点A,B在抛物线y2=4x上,所以y12=4x1,y22=4x2.两式相减可得yx22--xy11=y24 y1.又P是弦AB的中点,y1 y2=6,所以kAB=y2-y1x2-x1=32,…  相似文献   

8.
不等关系是高中数学研究的重要方面 ,也是各级各类考试必考的内容 .不等关系的引进又是令人颇感疑难的问题 .下面笔者就根据自己的多年从教经验 ,谈谈在数学解题中如何引进不等关系 ,从而顺利解题 .1 判别式法应用方程的数学思想将题目的条件转化为一元二次方程是否有解的问题去解决 ,即根据一元二次方程ax2 bx c =0有解的条件Δ≥ 0 ,从而引进不等关系 .例 1 已知抛物线y =ax2 -1上存在关于直线l:x y =0成轴对称的 2点 ,试求实数a的取值范围 .解 设抛物线上关于直线l对称的两相异点P(x1 ,y1 )、Q(x2 ,y2 ) ,线段PQ中点为M (x0 ,y0 …  相似文献   

9.
抛物线的焦点弦有着很多值得思考的性质,这里略举一二.图1(一)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则弦长|AB|=x1 x2 p.这由抛物线的定义很容易得到.(二)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则y1·y2=-p2.证明:抛物线y2=2px与直线AB:x=ky 2p,联立得y2-2kpy-p2=0,所以由韦达定理得y1·y2=-p2.(三)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,令|AF|=r1,|BF|=r2,则r11 r12=2p.设抛物线的焦点F2p,0,当直线的斜率不存在…  相似文献   

10.
题如图1,过抛物线y2=2px(p>0)焦点F的一条直线和抛物线相交,交点的纵坐标为y1、y2.求证y1y2=-p2.证法1由已知,抛物线焦点F(2p,0),设过点F的直线与抛物线交于点A(x1,y1),B(x2,y2).若AB⊥x轴,则y1=p,y2=-p.所以y1y2=-p2.若AB与x轴不垂直,设直线AB的方程为y=k(x-2p),与y2=2px联立,得y2-2kpy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.证法2因直线AB过定点F且与x轴不平行,所以设直线AB的方程为x=my 2p.代入y2=2px得y2-2pmy-p2=0,因为y1、y2是方程的2根,所以y1y2=-p2.法1是常规解法,法2设出直线方程,避免了讨论直线斜率的存在性,是一种很…  相似文献   

11.
解析几何中有这样一个结论,即命题1在抛物线y2=2px(p>0)中,过顶点O作互相垂直的两直线交抛物线于A,B两点,连A,B交x轴于E点,则E为定点.图1证设A(x1,y1),B(x2,y2),直线AB:x=ky+m,代入y2=2px,得y2-2pky-2pm=0.故y1y2=-2pm.又OA⊥OB,得x1x2+y1y2=0,(1)21y22故y4p2+y1y2=0,m2-2pm=0,m=2p,或m=0(舍).即E点坐标为(2p,0)是定点.利用这个命题,求点O在直线AB上的射影的轨迹,显得特别方便,因OE为定长,就能看出所求轨迹是一个以OE为直径的圆(去掉点O).y1y2=b2m2-a2b2a2+b2k2,又DA=(x1+a,y1),DB=(x2+a,y2),因DA⊥DB,故DA·DB=0,即(x1+a)(x…  相似文献   

12.
本文介绍直线方程的一种/另类0求法及解题中的广泛应用.如果P(x1,y1),Q(x2,y2)两点坐标满足:Ax1+By 1+C=0,A x 2+By 2+C=0,说明P(x1,y1),Q(x2,y2)两点都在直线A x+By+C=0上,因为两点确定一条直线,所以直线PQ的方程为:Ax+By+C=0,这给出了求直线方程的一种新方法,应用这种方法,能使许多棘手的解析几何问题得到简捷地解决,下面举例说明.例1过点M(4,2)作x轴的平行线被抛物线C:x2=2py(p>0)截得的弦长为4 2.  相似文献   

13.
正如何提高高三第二轮复习的效率,切实做到"有效教学"是高三数学教师共同的心声,笔者就一堂解析几何公开课,结合自身多年的高三教学经历,谈谈在解析几何的复习中如何开展"有效教学".1教学设计筒录探究直线与椭圆的位置关系中的定点问题问题直线y=kx-2过定点吗?(1+m)x-(m+2)y+1=0呢?n(x+2y)+m(x-y-1)=0呢?设计意图最简单的问题让学生明确算理.例1已知抛物线E:x~2=4y,设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明:  相似文献   

14.
抛物线y=ax2+bx+c(a≠0)具有对称性,它的对称轴是直线x=-b2a,顶点在对称轴上.在求抛物线的解析式时,充分利用抛物线的对称性,可简化运算.现举例说明如下.例1已知抛物线y=ax2+bx+c经过A(0,-1)、B(1,2)、C(-3,2)三点,求该抛物线的解析式.解:∵B(1,2)、C(-3,2)是抛物线关于对称轴的对称点,∴抛物线的对称轴是x=121+-3=-1.设抛物线的解析式为y=a(x+1)2+k.将点A(0,-1)和B(1,2)代入,得-1=a+k,2=4a+k解得a=1,k=-2.∴所求抛物线的解析式为y=(x+1)2-2,即y=x2+2x-1.例2已知抛物线y=ax2+bx+c的顶点为A(3,-2),与x轴的两个交点B、C间的距离为4,求该抛…  相似文献   

15.
求二次曲线关于直线有对称点耐参数的范围问题是解析几何的典型题型,也是历年高考的热点题型.引导学生从多种角度探索解题途径,有益于培养学生的灵活解题能力,本文举一例加以说明.例题使抛物线 y=ax~2-1(a≠0)上总有关于直线 l:x y=0对称的两点,试求实数 a 的取值范围.  相似文献   

16.
一、直线与圆锥曲线位置关系问题这种问题实际上是讨论直线方程和圆锥曲线方程组成的方程组是否有实解的问题.通过消元最终归结为讨论一元二次方程ax2+bx+c=0的解的个数问题.要注意a≠0与a=0两种情形,同时要特别重视判别式的作用.例1直线y=kx-1与抛物线(y+1)2=4(x-2)只有一个公共点,则k的值为.解(1)若k=0,y=-1,显然直线与(y+1)2=4(x-2)只有一个公共点.(2)若k≠0,由y=kx-1,(y+1)2=4(x-2),得k2x2-4x+8=0.∴驻=16-4k2×8=0,即k=±姨22.故k的值可能为0,-姨22,姨22.二、弦长问题若直线l与圆锥曲线的交点为A(x1,y1),B(x2,y2),由AB=(x2-x1)2+(y2-…  相似文献   

17.
性质 过圆锥曲线上任一点 P(x0 ,y0 )作倾斜角互补的两直线交该曲线于 A,B两点 ,则直线 AB的倾斜角为定值 ,且直线 AB的倾斜角与该曲线在 P点的切线的倾斜角也互补证明 以下只证明椭圆情况 ,双曲线与抛物线同理可证 .设椭圆方程为 :x2a2 y2b2 =1,图 1(1)当 y0 =0时 ,直线 AB的倾斜角与 P点处切线的倾斜角都是90°,知结论成立 ;(2 )当 y0 ≠ 0时 ,设直线的参数方程为 :x=x0 tcosα,y=y0 tsinα,(t为参数 )代入椭圆方程整理得 :(b2 cos2 α a2 sin2 α) t2 2 (b2 x0 cosα a2 y0 sinα) t b2 x20 a2 y20 =a2 b2 .∵点 P在…  相似文献   

18.
一、设置疑问要培养创造意识 ,可以以培养“质疑”能力作为突破口 .俗话说 ,有疑则有思 ,无疑则无思 .“疑”乃学问之始 ,创新之本 ,而疑就是问题 .问题是人思维的产物 ,也是人思维的原动力 .要培养质疑能力 ,就要设置疑问情景 ,激发产生疑问 ,这有助于学生积极主动地探索知识 ,更有利于培养学生思维的独立性和严密性 .例如 :求过点 (0 ,1)而且与抛物线y2 =2x只有一个公共点的直线方程 .一部分学生错解成 :设过点 (0 ,1)的直线方程为y =kx+ 1联列方程组 y =kx+ 1y2 =2x整理得 :k2 x2 + (2k-2 )x + 1=0 (#)∵直线与抛物线y2 =2x只有一个公共…  相似文献   

19.
在解解析几何综合题时经常要碰到直线过 x轴上定点 (a,0 )的问题 ,且在高考中也频频出现 ,如 1983年压轴题、1993年压轴题、1996年压轴题等都涉及到这个问题 ,而在客观题中几乎年年有这样的考题 .但在解题时一般同学都用常规的点斜式法设直线方程为 y=k(x- a) ,有些情况由于设直线不恰当 ,从而使运算繁琐 ,有时还会使问题陷入僵局 .例 1 已知过定点 P(2 ,0 )的直线 l交抛物线 y2 =4x于 A,B两点 ,求三角形 AOB(O为坐标原点 )面积的最小值 .图 1解 设直线 l的方程为 y=k(x- 2 ) ,与抛物线方程 y2 =4x联立 ,消去 y得 k2 x2 - 4(k2 1) x …  相似文献   

20.
数学综合题常常是高考试卷中的把关题和压轴题,在高考中举足轻重.高考的区分层次和选拔使命主要靠这类题型来完成预设目标.近几年高考数学综合题已由单纯的知识叠加型转化为知识、方法和能力综合型,尤其是创新能力型试题.综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点.下面举例谈谈高考数学综合题的基本解题策略.一、避实就虚,整体求解【例1】抛物线C的方程为y=ax2(a&lt;0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1).(Ⅰ)求抛物线C的焦点坐标和准线方程;(Ⅱ)设直线AB上一点M,满足BM=λMA,证明线段PM的中点在y轴上;(Ⅲ)当λ=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标y1的取值范围.解析(Ⅰ)由抛物线C的方程y=ax2(a&lt;0)知,焦点坐标为0,41a,准线方程为y=-41a.(Ⅱ)设直线PA的方程为y-y0=k1(x-x0),直线PB的方程为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号