首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this paper, stability analysis of linear time-varying neutral delay systems is considered. A necessary and sufficient condition for delay-independent global asymptotic stability of such systems is derived. Eventually, two examples are given in order to show the results established.  相似文献   

2.
In this paper, the stability of grey discrete-time systems is discussed whose state matrices are interval matrices. A new approach is obtained which guarantee the stability of grey discrete-time systems. The sufficient condition for robust stability of grey time delay systems subjected to interval systems is also derived. By mathematical analysis, the stability criterion is less conservative than those in previous results. Examples are given to compare the proposed method with reported recently.  相似文献   

3.
This paper aims at establishing necessary and sufficient conditions of exponential stability for linear discrete-time systems with multiple delays. Firstly, we introduce a new concept—Lyapunov matrix, and investigate its properties, existence and uniqueness by: (i) characterizing the solution of a boundary value problem of matrix difference equations; and (ii) constructing complete type Lyapunov–Krasovskii functionals with pre-specified forward difference. Secondly, a new constructive analysis methodology, named Lyapunov matrix approach, is proposed to establish necessary and sufficient exponential stability conditions for discrete-time systems with multiple delays. Finally, two numerical examples are presented to illustrate the effectiveness of the theoretical results. It is worth emphasizing that, from a view of computation, the Lyapunov matrix approach proposed here is concerned with three key steps: (i) solve a systems of linear equations; (ii) check whether a constant matrix is of full-column-rank, and (iii) judge whether a constant matrix is positive definite. All of these can be easily realized by using the tool software—MATLAB.  相似文献   

4.
This paper studies the finite-time stability and stabilization of linear discrete time-varying stochastic systems with multiplicative noise. Firstly, necessary and sufficient conditions for the finite-time stability are presented via a state transition matrix approach. Secondly, this paper also develops the Lyapunov function method to study the finite-time stability and stabilization of discrete time-varying stochastic systems based on matrix inequalities and linear matrix inequalities (LMIs) so as to Matlab LMI Toolbox can be used.The state transition matrix-based approach to study the finite-time stability of linear discrete time-varying stochastic systems is novel, and its advantage is that the state transition matrix can make full use of the system parameter informations, which can lead to less conservative results. We also use the Lyapunov function method to discuss the finite-time stability and stabilization, which is convenient to be used in practical computations. Finally, three numerical examples are given to illustrate the effectiveness of the proposed results.  相似文献   

5.
This paper shows that the stability tests for 1-D discrete systems using the transformation p=(z+z−1) and properties of Chebyshev polynomials developed previously can be directly obtained from the z-domain continued fraction expansion based on the functions (z+1) and (z−1+1) on an alternate basis. Furthermore, it is shown that the root distribution of a polynomial with real coefficient can be determined by the same algorithm.  相似文献   

6.
A new stability criterion for linear neutral delay systems is developed in this note. Based on Park's inequality, a new delay-dependent stability criterion is derived. A numerical example is proposed to illustrate the less conservatism of the obtained results.  相似文献   

7.
This paper investigates a stability problem for linear systems with time-varying delays. By constructing suitable augmented Lyapunov–Krasovskii functionals, improved stability criteria under various conditions of time-varying delays are derived within the framework of linear matrix inequalities (LMIs). Moreover, to reduce the computational burden caused by the non-convex term including h2(t), how to deal with it is applied by estimating it to the convex term including h(t). Finally, three illustrative examples are given to show the effectiveness of the proposed criteria.  相似文献   

8.
This paper focuses on the problem of advancing a theorem to estimate the stability bound of delay decay rate α and upper bound delay time τ to guarantee the stability of time-delay systems. Based on the Lyapunov–Krasovskii functional techniques and linear matrix inequality tools, exponential stability and decaying rate for linear time-delay systems are also derived. These results are shown to be less conservative than those reported in the literature. Examples are included to illustrate our results.  相似文献   

9.
This paper is concerned with the stability analysis of linear systems with time-varying delays. First, by introducing the quadratic terms of time-varying delays and some integral vectors, a more suitable Lyapunov-Krasovskii functional (LKF) is constructed. Second, two new delay-dependent estimation methods are developed in the stability analysis of linear system with time-varying delays, which include a reciprocally convex matrix inequality and an integral inequality. More information about time-varying delays and more free matrices are introduced into the two estimation approaches, which play a key role for obtaining an accurate upper bound of the integral terms in time derivative of LKFs. Third, based on the novel LKFs and new estimation approaches, some less conservative criteria are derived in the form of linear matrix inequality (LMI). Finally, three numerical examples are applied to verify the advantages and effectiveness of the newly proposed methods.  相似文献   

10.
The robust stability problem for linear time-delay systems with general linear delayed impulses is investigated. Different from the previous results, the impulse-delays are allowed to be larger than the impulse period. An auxiliary state variable is introduced to construct an augmented model of the impulsive system, under which the discrete dynamics introduced by impulse-delays can be highlighted. A novel piecewise Lyapunov functional is introduced to analyze the stability of the augmented model. This functional is continuous along the trajectories of the augmented model, and is not required to be positive-definite at non-impulse instants. LMI-based exponential stability conditions are derived, which depend on both the impulse-dwell-time and the impulse-delay-interval. Numerical examples show that the obtained stability criteria are able to handle the benefit/harmful impulse-delays.  相似文献   

11.
In this paper we introduce certain constants that characterize exponential stability or exponential unstability of discrete linear time varying systems. We also present bounds for Lyapunov and Perron exponents in terms of the introduced constants.  相似文献   

12.
This paper is concerned with the stability analysis of discrete-time linear systems with time-varying delays. The novelty of this paper lies in that a novel Lyapunov–Krasovskii functional that updates periodically along with the time is proposed to reduce the conservatism and eventually be able to achieve the non-conservativeness in stability analysis. It can be proved that the stability of a discrete-time linear delay system is equivalent to the existence of a periodic Lyapunov–Krasovskii functional. Two necessary and sufficient stability conditions in terms of linear matrix inequalities are proposed in this paper. Furthermore, the novel periodic Lyapunov–Krasovskii functional is employed to solve the ?2-gain performance analysis problem when exogenous disturbance is considered. The effectiveness of the proposed results is illustrated by several numerical examples.  相似文献   

13.
This paper is concerned with exploring less conservative stability conditions for a class of switched positive linear systems. A switched matrix-parameterized copositive Lyapunov function (SMPCLF) is first introduced, where “matrix-parameterized” implies that the parameters of the constructed Lyapunov function are distributed in a matrix, which is different from the traditional vector-parameterized copositive Lyapunov function. Based on the proposed SMPCLF, a new stability criterion is derived for the underlying systems under arbitrary switching. Furthermore, by performing higher order relaxations in the SMPCLF and its time difference by positive states, the conservativeness can be further reduced. A numerical example is given to demonstrate the effectiveness and advantages of the obtained theoretical results.  相似文献   

14.
Let {Πτ(m, n): m?≥?n?≥?0} be the family of periodic discrete transition matrices generated by bounded valued square matrices Λτ(n), where τ:[0,1,2,?)Ω is an arbitrary switching signal. We prove that the family {Πτ(m, n): m?≥?n?≥?0} of bounded linear operator is uniformly exponentially stable if and only if the sequence n?k=0neiαkΠτ(n,k)w(k):Z+R is bounded.  相似文献   

15.
This paper is concerned with the problem of finite-time stability analysis of linear discrete-time systems with time-varying delay. The time-varying delay has lower and upper bounds. By choosing a novel Lyapunov–Krasovskii-like functional, a new sufficient condition is derived to guarantee that the state of the system with time-varying delay does not exceed a given threshold during a fixed time interval. Then, the corresponding corollary is developed for the case of constant time delay. Numerical examples are provided to demonstrate the effectiveness and merits of the proposed method.  相似文献   

16.
The problem of stability properties for the solutions of nonlinear difference equations is considered. The approach used is to study the behavior of the solutions of nonlinear difference equations with respect to solutions of a nonlinear difference equation. This is a more general setting than the comparison principle in which the comparison equation is a linear difference equation.The principal technique employed is an extension of Liapunov's direct method. A series of theorems is obtained yielding criteria for the behavior of solutions in terms of existence of the Liapunov-type function with appropriate properties.  相似文献   

17.
This work deals with the problem of optimal residual generation for fault detection (FD) in linear discrete time-varying (LDTV) systems subject to uncertain observations. By introducing a generalized fault detection filter (FDF) with four parameter matrices as the residual generator, a novel FDF design scheme is formulated as two bi-objective optimization problems such that the sensitivity of residual to fault is enhanced and the robustness of residual to unknown input is simultaneously strengthened. A generalized operator based optimization approach is proposed to deduce solutions to the corresponding optimization problems in operator forms, where the related H/H or H?/H FD performance index is maximized. With the aid of the addressed methods, the connections among the derived solutions are explicitly announced. The parameter matrices of the FDF are analytically derived via solving simple matrix equations recursively. It is revealed that our proposed results establish an operator-based framework of optimal residual generation for some kinds of linear discrete-time systems. Illustrative examples are given to show the applicability and effectiveness of the proposed methods.  相似文献   

18.
The switching signal design for global exponential stability of discrete switched systems with interval time-varying delay is considered in this paper. Some LMI conditions are proposed to design the switching signal and guarantee the global exponential stability of switched time-delay system. Some nonnegative inequalities are used to reduce the conservativeness of the systems. Finally, two numerical examples are illustrated to show the main result.  相似文献   

19.
This paper addresses the problem of giving consistency conditions for constrained linear discrete time systems in state space form. Conditions for various significant cases are given and analysed. Finally, the structure of the set of initial states for which consistency prevails and the set of reachable states are studied.  相似文献   

20.
This paper presents a new necessary and sufficient condition for testing the strong delay-independent stability of linear systems subject to a single delay. The proposed method follows from the use of matrix polynomials constraints and the Kalman–Yakubovich–Popov lemma. The resulting condition can be checked exactly by solving a feasibility problem in terms of a linear matrix inequality (LMI). Simple numerical examples are given to show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号