首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
不少的同学对于运用“三点定形”法证明线段的等比与等积得心应手,但对于同一直线上的线段成比例或者等积的题目感到困难·下面通过数例来介绍其方法·一例、1等线如代换图1,△ABC中,AB=AC,P是中线AD上一点,过C作CF∥AB交BP的延长线于F,BF交AC于E·求证:BP2=PE·PF·分析:三条线段在同一直线上,不能直接应用“三点定形”法证明,注意到P是BC垂直平分线上的点,可连PC,则PB=PC,即证PPCF=PPEC,可证△PCE∽△PFC·由∠EPC=∠CPF,易知∠ABP=∠ECP=∠F·所以命题得证·二例、2等比如代图换2,P为平行四边形ABCD对角线B…  相似文献   

2.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

3.
平行四边形是一种特殊的四边形,它具有很多独特的性质.在解答一些与线段有关的证明问题时,从构造平行四边形入手,常可化难为易.例1 如图1,△ABC中,AB=AC,E是AB上一点,F是AC延长线上一点,BE=CF,EF交BC于D.试说明DE=DF. 解 过E作EG∥AC交BC于G,连结CE,FG,则∠EGB=图1∠ACB.因为AB=AC,所以∠ABC=∠ACB=∠EGB,所以EG=BE. 因为BE=CF,所以EG=CF.又EG∥CF,所以四边形EGFC为平行四边形.因此DE=DF.例2 如图2,△ABC中,D,E分别为AB,AC的中点.说明:DE∥BC.图2解 延长DE到F,使FE=DE,连结AF,CF,CD.因为…  相似文献   

4.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

5.
证明等积式一般先将它恰当地化成比例式。若比例式中的四条线段构成有关相似三角形对应边的比 ,则问题较易解决。否则 ,应考虑添加辅助线 ,构成有关的相似三角形 ,以助问题的解决。  例 1.在△ ABC中 (AB>AC)的边 AB上取一点 D,在边 AC上取一点 E,使 AD=AE,直线 DE和BC的延长线交于点 P,求证 BP∶ CP=BD∶ CE。证明 :过点 C作CF∥ AB交 PD于F,则 BPCP=BDCF。∵AD=AD,∴∠ 1=∠ 4 ,∴∠ 3=∠ 4 ,∴ CE=CF,∴ BPCP=BDCE。  说明 :这是过分点 C作平行线 ,过 C还可作 CG∥ PD交 AB于 G(如上图 )。另证 :过 B作…  相似文献   

6.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

7.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

8.
△ABC中,记BC=a,AC=b,AB=c面积记为△;三条中线m_a=AD,m_b=BE,m_c=CF,重心为G;∠BGC=θ_1,∠AGC=θ_2,∠AGB=θ_3. 性质1、 如图,△ABC三条中线为AD、BE、CF,重心为G。△DGL、△FGM为正三角形,N为BG中点,则△LMN为正三角形。 引理  相似文献   

9.
证明线段的倍半关系是初中平面几何中的一种常见题型 ,本文试将证明该类问题的常见方法归纳如下 ,以供同学们学习时参考 .1 加倍或折半将欲证结论中的短线段加倍或将长线段折半 ,改为证明两线段相等 ,此为解决线段倍半关系的最常用的方法 .例 1 如图 1,在△ABC中 ,AB =AC ,D为AB延长线上一点 ,BD =AB ,CM是AB边上的中线 .求证 :CD =2CM .分析 1  (加倍 )延长CM至点E ,使ME =CM ,则CE =2CM ,易证△BME≌△AMC ,得BE=AC=BD ,∠MBE =∠A ,从而∠CBD =∠A +∠ACB =∠MBE +∠ABC =∠CBD ,进而可证△CBD≌△CBE ,…  相似文献   

10.
20 0 3年北京市中考题第 2 2题 :如图 1 ,在 ABCD中 ,点E、F在对角线AC上 ,且AE =CF .请你以F为一个端点 ,和图中已标明字母的某一点连成一条新线段 ,猜想并证明它和图中已有的图 1某一条线段相等 (只须证明一组线段相等即可 )连结 :     ;猜想 :     =     ;证明 :分析   若连结BF ,则可证明BF =DE ;也可连结DF ,证明DF =BE .证明   连结BF ,∵四边形ABCD是平行四边形 ,∴AD =BC ,AD ∥BC ,∴∠DAE =∠BCF ,又AE =CF .∴△ADE ≌△CBF(SAS) ,∴BF =DE .点评 :本题所给出的图形是一个平行四边形中…  相似文献   

11.
例题如图1,已知直线AB同侧有平行线AC、BD,连结AD、BC交于E,又EF∥AC交AB于F,求证:A1C+B1D=E1F.分析:这是形如1a+b1=1c的证题,通常先化为ca+bc=1,再用等比代换证ac=ef,bc=eg且f+g=e,即化成同分母分式相加的形式。证明∵EF∥AC∥BD图1∴AECF=AFBBBEDF=AABF∴AECF+BEDF=BFA+BFA=1∴A1C+B1D=E1F.由此例可得:过梯形对角线交点向一腰所引平行于底的线段长的倒数等于两底长的倒数之和。把图1作为“基本图形”,在证形如1a+1b=1c的证题时,只要寻找或构出“基本图形”便可找到解决问题的突破口。一、直接应用“基本图形”…  相似文献   

12.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

13.
一、△ABC的三边长分别为a,b,c,b<c,AD是角A的内角平分线,点D在边BC上. (1)求在线段AB,AC内分别存在点EF(不是顶点)满足BE=CF和∠BDE=∠CDF的充分必要条件(用角A、B、C表示);  相似文献   

14.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

15.
全等三角形的性质定理与判定定理是平面几何知识的基础,有着广泛的应用.有些几何图形虽然不是明显的全等三角形,但是可根据图形条件或结论的特点,通过平移或旋转来构造全等三角形,进而利用全等三角形的性质证得结论.一、将一部分图形平移,构造全等三角形证题例1如图1,已知在△ABC中,A D是BC边上的中线,E是A D上一点,BE=AC,BE的延长线交A C于F,求证:A F=EF.分析本题可通过作△AD C关于点D的对称△GD B,从而把证AF=EF,即∠FAE=∠A EF转化为证明∠G=∠BEG.证明作BG∥AC交A D的延长线于G,则△AD C≌△GD B.因为AC=BG,…  相似文献   

16.
性质 如图,在△ABC中,角A的平分线AD上任意一点Q作直线交AB、AC于B’、C’.若AQ=tAD、AB'=x.AB、AC'=y.AC.则b/x+c/y=(b+c)/t(其中b=|AC|,c=|AB|)  相似文献   

17.
题:在△ABC中,O是AB边的中点,E、F分别在AC、BC上。求证:△DEF的面积不超过△ADE与△BDF的面积之和。有一本初中数学复习资料对这题作如下的分析和证明。分析要证△DEF的面积不超过△ADE与△BDF的面积之和,只要证 S_(△ADE)+S_(△BDF)>S_(△DEF)…证明延长ED到G,使DG=ED。连结BG和FG,又AD=BD,(已知) ∠ADE=∠BDG,(对顶角相等) ∴△ADE≌  相似文献   

18.
例1如图1,在△ABC中,AB>AC,AD是BC边上的中线.求证:∠BAD<∠CAD.图1分析注意到AD是BC边上的中线,中线加倍是常见的添辅助线的方法.然后把研究对象集中在△ABE中,由大边对大角,将问题得以解决.证明延长AD到点E,使DE=AD,连结BE,则D是△ADC与△EDB的对称中心,BE=CA,∠E=∠CAD.∵AB>AC,∴AB>BE,∴∠BAD<∠E,从而∠BAD<∠CAD.例2如图2,在△ABC中,D是BC边的中点,ED⊥DF,EF分别交AB、AC于E、F两点.求证:BE+FC>FE.图2分析能否将BE、FC、EF移到同一三角形考察线段不等关系?利用对称性作图是可以实施的,于是问…  相似文献   

19.
结论1:已知三角形△ABC为直角三角形,设BC=a、AC=b、AB=c,若AD为斜边BC上的中线,则AD=a/2.对此结论初中生就熟练掌握了,但我们没有深入思考一下,如果说三角形是一般的三角形呢?有没有类似的结论呢?现探究如下:题目1设AD为三角形△ABC的中线,BC=a、AC=b、AB=c,求AD关于a、b、c的关系式.解因为AD为三角形中线,  相似文献   

20.
同学们知道 :垂直且平分一条线段的直线叫做这条线段的垂直平分线。线段垂直平分线定理及其逆定理分别是 :线段垂直平分线上的点到这条线段两个端点的距离相等。到一条线段两个端点的距离相等的点 ,在这条线段的垂直平分线上。求解某些几何证明题时 ,从构造线段垂直平分线入手 ,可简化证明的思维过程 ,捷足先登。例 1 如图 1 ,∠ 1 =∠ 2 ,BC =BD ,求证 :AC =AD证明 :连结CD的交直线AB于E∵BC =BD ,∠ 1 =∠ 2∴BE是CD的垂直平分线∵点A在直线BE上∴AC =AD 例 2 如图 2 ,△ABC中 ,∠ACB =90° ,∠B =6 0° 求证 :AB =2BC …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号