首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
一题多得     
题目:已知方程x~2+px+q=0 有二实数根α和β,且α~2+β~2=1,求p和q的范围。一、应用韦达定理这是典型的代数题,自然从数的等与不等方面去着手。首先,由有实根条件得△=p~2-4q≥0 ①其次,α~2+β~2=1,即(α+β)~2-2αβ=1,由韦达定理得 p~2-2q=1 ②由①和②可求p和q的最值:p~2=2q+1,由p~2≥0得2q+1≥0.∴q≥-1/2 ③把p~2=2q+1代入①得q≤1/2 ④所以-1/2≤q≤1/2,-1≤2q≤1,0≤2q+1≤2,即 0≤p~2≤2,∴ -2~(1/2)≤p 2~(1/2)。  相似文献   

2.
一、知识要点1.韦达定理及其逆定理与判别式的综合应用;2.韦达定理及其逆定理与三角、几何、函数知识的综合应用‘=、解题指导例1已知方程0有两个实数根,且这两个根的平方和比这两根的积大21,求m的值.分析要求m的值,只要根据已知条件列出关于一的方程,然后解所列方程并根据题目的隐含条件△≥0确定m的值.解设x1、X2是已知方程的两个实数根,由韦达定理,得解之,得m1=17,m2=-1.已知方程有两个实数根,解此不等式,得m≤0m=1.例2已知方程X’-2。X+b一0中的实数。、b满足条件owtbwtZ。-1,证明方程有两个不相等的正实数根…  相似文献   

3.
我们知道,韦达定理是一元二次方程的基础理论之一,然而应用韦达定理探求二次方程根的代数式的值或讨论二次方程的系数中所含参数的取值范围等问题时,存在一个常见的毛病——缺乏严谨性。本文从两个方面的表现略举数例,进行剖析。一、忽视韦达定理的使用条件例1 已知sinα、cosα是方程8x~2+6hx+2h+1=0的两个根,求h的值。错解:由韦达定理知  相似文献   

4.
众所周知,在判别式△=b^2-4ac≥0的前提条件下,一元二次方程ax^2+bx+c=0(a≠0)有两实根x1、x2.在此基础上利用韦达定理,对解决形如x1^2+x2^1、1/x+1+1/x2、x1/x2+x2/x1等对称式的求值问题颇有效果.对某些根不对称问题和方程的参数问题,本文通过适当的变换和构造后,使用韦达定理也有奇效.  相似文献   

5.
一、教学中的一个问题己知方程x~2+px+q=0的两个根x_1、x_2,求以此两根的平方为两根的方程.解:∵x_1、x_2是方程x~2+px+q=0的根,由韦达定理,得  相似文献   

6.
一、韦达定理的意义一元二次方程ax~2+bx+c=0的根x_1、x_2与系数a、b、c有如下关系:x_1+x_2=-b/a,x_1x_2=c/a. 这是法国数学家韦达于1559年首先给出的,因而称为“韦达定理”.特别地,对于方程x~2+px+q=0而言,它的两根x_1、x_2满足x_1+x_2=-p,且x_1x_2=q. 顺便提一下韦达定理的逆定理:  相似文献   

7.
<正>韦达定理可谓是初中数学教学的"重头戏",因其是解决一元二次方程及相关问题的"杀手锏",在中考升学尤其是初中各类竞赛中都颇受命题人的青睐,其重要性不言而喻.下面,通过近几年的几道竞赛题体会如何利用韦达定理巧解竞赛题.例1(第23届希望杯全国数学邀请赛初三试题)已知关于x的一元二次方程x2-2(m-1)x+m2-2(m-1)x+m2-1=0有两个不相等的实数根α,β,若α2-1=0有两个不相等的实数根α,β,若α2+β2+β2=4,则m=____.  相似文献   

8.
一元二次方程的根的判别式和根与系数的关系是揭示根的性质、根与系数之间的内在联系的两个重要定理 ,也是国内外各级各类数学竞赛中经常测试的知识交汇点。笔者研究发现 :先将题设条件适当变形 ,逆用韦达定理构造相应的一元二次方程 ,后根据其实数根的判别式不小于零列出不等式 ,再以解不等式为突破口常可解决多类赛题。一、求方程中的字母系数例 1:设 x2 - px q=0的二实根为 α,β;而以α2 ,β2为根的二次方程仍是 x2 - px q=0 ,则数对( p,q)的个数是。解 :由根的判别式 ,得 p2 - 4 q≥ 0 ,1由韦达定理 ,得 α β=p,αβ=q,∴ α2 β2 =(…  相似文献   

9.
(一)判别式与韦达定理的应用一元二次方程的根的判别式及韦达定理揭示了根与系数间的关系,是解决一类数学问题的重要工具。凡最后能归结到二次方程根的性质的问题,可通过判别式去解决;凡可归结到根的数值讨论的问题,可利用韦达定理去解决。用判别式与韦达定理时,要注意以下三点: 1.应先将方程化为一般式,尤其是方程右边的项切勿漏掉。 2.应用的前题分别是a≠0和a≠0,△≥0。 3.对方程ax~2 bx C=0(a≠0)的两  相似文献   

10.
如果两数α,β满足:α β=p,α·β=q,则α,β是关于x的一元二次方程x~2-px q=0的两个根,这便是韦达定理逆定理,它在实数域内应用广泛,在复数域内仍然适用,根据复数的有关概念和性质,灵活应用韦达定理逆定理,常能使一些复数问题,得以简捷解法。  相似文献   

11.
<正>如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0(a≠0)有两个实数根x_1和x_2,那么x_1+x_2=-b/a,x_1x_2=c/a,这就是著名的韦达定理.现行义务教育初中数学教材中的证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.笔者在文[1]中不借助于一元二次方程的求根公式给出了韦达定理的三种代数证法,本文再给出韦达定理  相似文献   

12.
如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1和x2,那么x1+x2=-a/b,x1x2=c/a,这就是著名的韦达定理.韦达定理的常规证法是利用一元二次方程ax2+bx+c=0的求根公式先求出它的两个根,然后分别计算这两根之和与两根之积.本文不借助于一元二次方程的求根公式给出韦达定理的几个新颖别致的证法,供大家参考.  相似文献   

13.
已知一元二次方程(或二次函数)的根的分布,求式中字母参数的取值范围,是二次函数及不等式部分较常见的问题.下面分情况谈谈这类问题的一般处理方法.一、已知两根的值,则直接应用韦达定理,求得字母参数的取值范围例1 不等式ax2+bx+c>0的解集为{x|2相似文献   

14.
一元:二次方程ax2+bx+c=0(n≠0)的根与系数的关系,是在方程有两实数根的条件下,运用求根公式(b2-4ac≥0)推导出来的.因此,利用根与系数的关系解题时,切勿忽视△≥0这一前提,谨防错解.请看下面两例.  相似文献   

15.
构造一元二次方程解题是一种常用的解题方法,这种方法的关键是根据题目中的一些条件来构造一元二次方程,从而达到将问题化难为易、化繁为简的目的.下面举例说明:一、利用韦达定理的逆定理构造一元二次方程当题目中含有x1 x2=p、x1x2=q时,则可以利用韦达定理的逆定理构造一元二次方程来解决.例1已知a、b、c、d为实数,且满足2c-a=b,c2 14d2=ab,求证:a=b.证明:由已知a b=2c,ab=c2 14d2得a、b是方程x2-2cx c2 14d2=0的两根.∵a、b、c、d为实数,∴Δ=4c2-4(c2 14d2)=-d2≥0.∴d2≤0.又因为d2≥0,d2=0,即△=0.∴方程有两个相等实根,即a=b.二、利用…  相似文献   

16.
一元二次方程是中考命题的“重头戏”,近年来 ,围绕着“重在基础 ,突出能力 ,尝试创新”,中考试题中一元二次方程新题型精彩纷呈。一、设计有隐含条件的一元二次方程问题解决此类问题要注意 :1.用判别式时不可忽视二次项系数不为零这个隐含条件 ;2 .用韦达定理时不可忽视二次项系数不为零这一隐含条件 (a≠ 0 )和二次方程有实数根这一隐含条件 (△≥ 0 )。例 1.已知 x1、x2 是关于 x的方程 (m - 1) 2 x2 - (2 m - 5 ) x+ 1=0的两个实数根。(1)若 p=1x1+ 1x2,求 p的取值范围 ;(2 )问 x1、x2 能否同为正数 ?若能同为正数 ,求出相应的取值范围 …  相似文献   

17.
在某市举行的一次初中数学竞赛预赛中,有这样一道试题:设 p、q 是一元二次方程 x~2+px+q=0的根,求 p、q 的值.所给出的标准答案是(这里称为解法一).解法一因为 p、q 是一元二次方程 x~2+px+q=0的根,故由韦达定理可得  相似文献   

18.
在解与实数相关的问题时,常常用到一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac,这里谈谈判别式的具体应用中的一些错解。一、待定系数的求值问题例1.已知关于x的方程x2-mx-n=0的两根的积比两根之和的2倍小12,并且两根的平方和为22,求m,n的值。错解:设两根分别为x1、x2则x1+x2=m,x1x2=-n依题意,得2(x1+x2)-x1x2=12x21+x22=2 2即2m+n=12m2+2n=2 2解得m1=7n1=-272 或m2=-3n2=132 分析:∵方程有两根,∴△≥0即m2+4n≥0,但m1=7,n1=-272时,△<0。不合题意,应舍去。当m2=-3,n2=132时△>0∴m=-3,n=132例2.已知一元二次方…  相似文献   

19.
设实数x_1、x_2为方程x~2-px q=0的两实根,则由韦达定理有x_1 x_2=p,x_1x_2=q,又上述方程的判别式Δ=p~2-4q≥0。 把韦达定理(及其逆定理)和根的判别式相结合,可以解决很多类型的问题。 一、求取值范围 例1 实数a、b、c满足a~2-bc-6a 3=0,b~2 c~2 bc-2a-1=0。  相似文献   

20.
大家知道,对于有理数系数的一元二次方程ax~2+bx+c=0(a≠0),有有理数根的条件是△=b~2-4ac为一个有理数的平方。关于求整数根问题,一般地是在以上结论基础上利用求根公式、判别式、根与系数的关系(韦达定理)等二次方程的基本理论并结合整  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号