首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一、直接利用组合数公式证明二、利用组合定义证。 [例1] 求证 C_n~(m 1) C_n~(m-1) 2C_n~m=C_(n 2)~(m 1) 证:从n 2个不同元中取m 1个元的组合可分四类:i)含指定元甲、乙的有C_n~(m-1)种,ii)不含甲、乙的有C_n~(m 1)种,iii)、iv)含甲不含乙与含乙不含甲的各有C_n~m种。由加法原理得原式。三、利用组合性质证。如例1原式左=(C_n~(m 1) C_n~m (C_n~(m-1) C_n~m)=C_(n 1)~(m 1) C_(n 1)~m=C_(n 2)~(m 1)。  相似文献   

2.
我们知道,有这样两个组合公式: C_n~m=C_(n-1)~m+C_(n-1)~(m-1); C_r~r=C_(r+1)~r+C_(r+2)~r+…+C_(r+n+1)~r =C_(r+n)~(r+1)现在,我们来考虑组成这两个公式的各个组合数的倒数是否也能组成相应的公式?下面我们分别来讨这两个问题。定理1 设m,n为自然数,且m≥2,m≤n,则  相似文献   

3.
在排列组合中,公式C_(n 1)~m=C_n~m C_n~(m-1)可以由计算证得,也可以逆过来用排列组合的概念来推导.即可将从n 1个不同的元素中每次取出m个的组合数,按其中某个特定元素“取”或“不取”来划分为两种情况.若取,则只须从另n个不同元素中取出m-1个,有  相似文献   

4.
让我们先看下面两个例题: 例1 求证C_(n-1)~m C_(n-2)~m C_(n-3)~m… C_(m 1)~m C_m~m=C_n~(m 1) 证明:由等比数列求和公式知(1 x)~(n-1) (1 x)~(n-2) (1 x)~(n-3) … (1 x)~(m 1) (1 x)~m=((1 x)~n-(1 x)~m)/x上式左边x~m项的系数是 C_(n-1)~m C_(n-2)~m C_(n-3)~m … C_(n 1)~m C_m~m,上式右边的分子中,x~(m 1)项的系数是G_n~(m 1),应当相等,故等式成立。例2 证明: C_n~1 2C_n~2 3C_n~3 … C_n~n=n2~(n-1)。证明:将等式  相似文献   

5.
公式C_(n+1)~m=C_n~m+C_n~(m-1)的一个应用利用组合数性质公式C_(n+1)~m=C_n~m+C=_n~(m-1)可以求形如{n(n+1)…(n+k-1)}的数列的前n项和S_n。 [例1] 求和 S=1·2·3+2·3·4+…+n(n+1)(n+2) 解:1/3!S=1·2·3/3!+2·3·4·/3!…+n(n+1)(n+2)/3! =C_3~3+C_4~3+…+C_(n+2)~3=(C_4~4+C_4~3)+C_5~3+…+C_(n+2)~3 =(C_5~4+C_5~3)+C_6~3+…+C_(n+2)~3=…=C_(n+2)~4+C_(n+2)~3 =C_(n+3)~4=n(n+1)(n+2)(n+3)/4!,  相似文献   

6.
一、什么是原型构造法先来看一简单例子:例1:证明组合性质C_(n 1)~m=C_n~(m 1) C_n~m.常规证法是利用组合数公式验证,现根据组合的意义,构造一个问题原型:考虑从n 1个运动员中选m个参赛,其组合数为C_(n 1)~m.分两种情况:队长上场和队长不上场,分别有C_n~(m-1)和C_n~m种组合,由加法原  相似文献   

7.
灵活运用等比定理,可使常见题获得新颖解法。 例1 若C_n~m:C_n~(m 1):C_(n 1)~m=3:2:5,求m:n的值。 解 由已知条件易得C_N~m/3=C_n~(m 1)/2=C_(n 1)~m/5,  相似文献   

8.
在学习过程中,我们遇到求形如(1+2x+3x~2)~5的展开的项数问题,通过分析,我们猜测如下命题。我用已学过的组合性质C_(n+1)~m=C_n~(m-1)+C_n~m及二项式定理证明了这一命题。命题:(sum from i=1 to m a_i)~n(n≥1,m≥1)的展开项数为C_(m+n-1)~n项。证明:我们对自然数m用数学归纳法。①、当m=1、2时,对一切自然数n命题显然成立。②、假设m=k时,对一切自然数n命题成立。当m=k+1时, 据归纳假设,上式右端展开后,其项数分别为:C_k~0项,C_k~1项,C_(k+1)~2项,C_(k+2)~3项,…,C_(k+n-1)~n项。又由于上式右端a_(k+1)的方次不同,它们之间不可能再合并同类项。故有 (sum from i=1 to k+1 a_i)~n展开项数=C_k~0+C_k~1+C_(k+1)~2+C_(k+2)~3  相似文献   

9.
一类有关自然数的求和问题,若能将通项变形成组合数,构造出组合恒等式: C_(n-1)~m+C_(n-2)~m+C_(n-3)~m+…+C_(n+1)~m+C_m~m=C_n~(m+1)(高中代数第三册第81页18(2)题)。用其求和,则非常简捷。例1 求和 1×(3×1+1)+2×(3×2+1)+…+n(3n+1)。  相似文献   

10.
本文目的在于用初等代数的方法求如下一类级数的前(n-1)项的和: 1~m+2~m+3~m+…+k~m+…+(n-1)~m+…从而使学生对级数求和,二项式展开等知识进一步得到深化,并为建立初等与高等数学的联系提供一个有意义的应用例子。一、公式的推导: 记б_n~(m)=1~m+2~m+3~m+…+k~m+…+(n-1)~m (1) 其中m是正整数。我们注意到如下关系式: (l+1)~(m+1)-l~(m+1)=C_(m+1)~1l~m+C_(m+1)~2l~(m-1)+C_(m+1)~3l~(m-2)+…C_(m+1)~kl~(m-k+1)+… +C_(m+1)~ml+1……(2) 在(2)式两端分别令l=1,2,3,…,(n-2),(n-1),得:  相似文献   

11.
约定:不言而喻,当m>n时,c_n~m=0。反之,零也可用c_n~m(m>n)表之。 公式1:C_(n+1)~m-C_n~m=C_n~(m-1)。 采用上述约定,公式中组合数的上标可不小于下标。从而,C_n~m  相似文献   

12.
现行高三数学中学到了二项式定理:(a+b)~n=C_n~0a~n+a_n~1a~(n-1)b+C_n~2a~(n-2)b~2+……+C_n~nb~n。若令a=1,b=1,代入上式,就得到(1+1)~n=C_n~0+C_n~1+C_n~2+……+C_n~n,这是全组合公式,即从n个元素中一个也不取,取一个、取二个、……、取n个元素的组合总数,那么(1+2)~n的展开式的组合原理是什么呢?或者说,它的数学模型是什么?下面我们先看一个具体问题。  相似文献   

13.
由公式C_n~k C_n~(k 1)=C_(n 1)~(k 1),可得:C_2~2 C_3~2 … C_n~2=C_(n 1)~3,sum from k=2 to nC_k~2=C_(n 1)~3,  相似文献   

14.
全日制十年制高中《数学》习题十第10、(1)题,要求证明这样一个组合恒等式: C_n~n C_(n 1)~n … C_(n m)~n=C_(n m 1)~(n 1)。①该书复习题四第1(3)题,又要求证明C_(n-1)~m C_(n-2)~m C_(n-3)~m … C_(m 1)~m C_m~m=C_m~(m 1)显然,这两个等式实质上是一回事。  相似文献   

15.
组合恒等式的证明是教学中的一个难点。有关书刊上一般都介绍了利用组合数公式、组合数性质、数学归纳法、二项式定理等很多证法。本文将探讨一种新的证明方法,即构造法证明组合恒等式。一、构造法证明思想的缘起让我们先看两个简单的组合问题例1、从n个不同元素中取出m个元素并成一组,有多少不同的方法? 解法一、设取法有N种。由组合数定义,得N=c_n~m 解法二、先从n个不同元素中选定n-m个,然后再将其余的m个元素取出,则N=c_n~(n-m) 解法三、设这n个不同元素为α_1、α_2、…α_m。从中取出m个元素有如下两类办法:即取出的m个元素中含有α_1或不含α_2两类。若含有α_1,则应从其余的n-1个元素中再取出m-1个元素,有c_(n-1)~(m-1)种方法;若不含α_1,则应从其余的n-1个元素中取出m个元素,有c_(n-1)~m种方法。由加法原理,得N=c_(n-1)~(m-1)+c_(n-1)~m。  相似文献   

16.
组合数恒等式是初等数学中的一个重要课题。这类命题的特点是:结构比较复杂,解法灵活多变,初学者不易掌握。本文试通过若干实例,总结常用的解题思路。 1.恰当选择数学横型有些命题与组合的意义密切相关,待证等式的两边,可以看作同一组合问题用不同方法计算组合数的结果。对于这类命题,可以从选择数学模型人手。联系组合的定义,联系加法原理和乘法原理,用说理的方法来证明。例1 试证: C_r~oC_n~m+C_r~1C_n~(m-1)+C_r~2C_n~(m-2)+……+C_r~(m-1)C_n~1+C_r~mC_n~o=C_(n+r)~m。证明设有n+r个不同的元素,我们用两种方法计算每次取出m个元素的组合数:  相似文献   

17.
习题是数学的心脏,数学课本习题是数学教材的重要组成部分。刻意探讨习题在解题中的应用,能帮助学生学会课本知识,又为指导学生提高解题能力开辟了一条有效的途径。高中代数(甲种本)第三册P.83,18(2)求证:C_(n-1)~m C_(n-2)~m … C_(m-1)~m C_m~m =C_n~(m 1) 这道习题的结论可来巧妙地解一些数列求和题。例1 求下列数列的和: (1)1 2 3 4 … n; (2)1·2 2·3 3·4 … n(n 1); (3)sum from k=1 to n k(k 1)(k 2)(k 3)…(k p-1)。解:(1)1 2 3 4 … n。  相似文献   

18.
定理m元一次不定方程x1 x2 … xm=n(m,n∈N,m,n≥2)的正整数解有C_(n-1)~(m-1)组,自然数解有C_(n m-1)~(m-1)组.证明①若xi为正整数,则这个不定方程正整数解的组数等价于x个小球之间有n-1个空隙,从中放入m-1个隔板,故其正整数解的组数为C_(n-1)~(m-1).  相似文献   

19.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

20.
1985年全国高中联赛有一道求不定方程整数解的竞赛题,原题如下: 方程2x_1+x_2+x_3+…+x_(10)=3共有多少组不同的非负整数解? 此题难度不大,但其一般化以后的结论却是很有意思的,下面先证明两个关于不定方程整数解的命题。命题1 不定方程 x_1+x_2+…+x_m=n (n≥m)共有C_(n-1)~(m-1)=1组不同的正整数解。 (证明请参看苏淳编写的“同中学生谈排列组合”一书。) 命题2 不定方程 x_1+x_2+…+x_m=n(n≥0)共有C_(n+m-1)~(m-1)组不同的非负整数解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号