首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二面角是立体几何的一个重要概念,二面角的平面角的求法是立体几何中的一个重点,也是难点,其中以多面体为载体的二面角的计算问题还是一个热点.在此,我们利用极限和函数思想方法来探求一类二面角的取值范围.  相似文献   

2.
20 0 4年高考数学 (湖北卷 )理科第 19题 :如图 1,在Rt△ABC中 ,已知BC =a ,若长为 2a的线段PQ以点A为中点 ,问PQ与BC的夹角θ取何值时 ,BP·CQ的值最大 ?并求出这个最大值 .1 基本解法本题主要考查向量的概念 ,平面向量的运算法则 ,考查运用向量及函数知识的能力 .解法Ⅰ ∵AB⊥AC ,故AB·AC =0 .∵AP =- AQ ,BP =AP- AB ,CQ =AQ -AC ,∴BP·CQ =(AP -AB)· (AQ -AC)=AP· AQ - AP· AC- AB· AQ +AB·AC=-a2 -AP·AC +AB·AP=-a2 +AP· (AB- AC)=-a2 +12 PQ·BC=-a2 +a2 cosθ .当cosθ=1,即θ =0 (…  相似文献   

3.
求二面角的大小是历届高考的重点内容之一,其关键是要作出二面角的平面角,这恰好是不少同学感到头疼的问题,下面介绍几种作二面角的平面角的常用技巧。  相似文献   

4.
2004年高考数学(湖北卷)理科第19题: 如图1,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问PQ与BC的夹角θ取何值时,BP·CQ的值最大?并求出这个最大值.  相似文献   

5.
200 4年高考数学试题 (必修 选修Ⅱ )第 ( 2 0 )题是这样的 :如图 1,已知四棱锥P—ABCD ,PB⊥AD ,侧面PAD为边长等于 2的正三角形 ,底面ABCD为菱形 ,侧面PAD与底面ABCD所成的二面角为12 0° .(Ⅰ )求点P到平面ABCD的距离 ;(Ⅱ )求面APB与面CPB所成的二面角的大小 .高考结束后 ,笔者对 2 0名考生进行了高考数学试题答卷情况专题访谈 ,从中获悉 ,很多考生在解答本题设问 (Ⅱ )时质量不高 .究其原因考生在解题的思想和方法上缺乏灵活性和深刻性 .今在正确解答设问 (Ⅰ )的基础上 ,系统归纳求解设问 (Ⅱ )的基本思想方法(不同于…  相似文献   

6.
2004年全国高中数学联赛第一试第四题:设O点在△ABC内部,且有OA^→ 2OB^→ 3OC^→=0,则△ABC的面积与△AOC的面积的比为  相似文献   

7.
二面角是立体几何的重点 ,也是难点 ,因而一直是高考中考查的热点知识之一 .本文结合高考题 ,归纳总结求二面角大小的 3种方法 .1 利用二面角的平面角求二面角利用二面角的平面角来求二面角的大小 ,是确定二面角大小的基本方法 .求作二面角的平面角主要有定义法、垂面法、三垂  相似文献   

8.
在二面角棱上取一点(常取特殊点),直接依定义找(或作)出平面角。  相似文献   

9.
2004年全国高考文(理)解几试题是:设椭圆x2/m 1 y2=1的两个焦点是F1(-c,0)与F2(c,0),(c>0),且椭圆上存在点P,使直线PF1与直线PF2垂直,(1)求实数m的取值范围;(2)设l是相应于焦点F2的准线,直线PF2与l相交于点Q,若|OF2|/|PF2|=2-3~(1/2),求直线PF2的方程.本题解法较多,这里仅给出其中一种解法.解(1)∵PFl1⊥PF2,∴点P在以线段F1F2的圆上,且半径为c=m~(1/2),又点P在已知椭圆上,椭圆的短半轴长为b=  相似文献   

10.
戴述贤 《中学教研》2004,(10):37-40
题目如图1,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(Ⅰ)试确定点F的位置,使得D1E⊥平面AB1F;(Ⅱ)当D1E⊥平面AB1F时,求二面角C1-EF-A的大小.(结果用反三角函数值表示)  相似文献   

11.
程俊 《中等数学》2004,(5):19-19
第 4 4届IMO第四题 :设ABCD是一个圆内接四边形 .从点D向直线BC、AC和AB作垂线 ,其垂足分别为P、Q和R .证明 :PQ =QR的充分必要条件是∠ABC的平分线、∠ADC的平分线和AC这三条直线相交于一点 .现证明该命题对任意凸四边形均成立 .图 1证明 :如图 1 ,连结QR、QP、AD、DC .因为DR⊥AR ,AQ⊥QD ,所以 ,A、R、D、Q四点共圆 ,且AD为该圆直径 .故QR =ADsin∠QDR =ADsin∠BAC .同理 ,QP =DCsin∠ACB .由△ABC及正弦定理有sin∠BACsin∠ACB=BCAB.所以 ,QRQP=ADsin∠BACDCsin∠ACB=AD·BCDC·AB.故QR =Q…  相似文献   

12.
高中数学一些教学辅导资料中有类似这样一道题:在二面角α-α-β中,若A∈α且A到α-的距离是A到β距离的∫2倍,求二面角α-α-β的大小?  相似文献   

13.
在对学生进行课外辅导的过程中,有位同学提出了以下一道题目:  相似文献   

14.
平面解析几何包括直线和圆、圆锥曲线两部分内容.主要考查直线和圆的方程,椭圆、双曲线、抛物线的定义、标准方程、几何性质,以及直线与二次曲线的位置关系和求轨迹方程等内容,涉及的数学思想方法主要有数形结合的思想、等价转化的思想、分类讨论的思想、以及配方法、换元法、待定系数法等数学方法.今年各地的高考试题中,解析几何试题一般在选择题、填空题中有1~2道,解答题一道,  相似文献   

15.
求二面角大小是立体几何的重点与难点.如何化解此难点,关键在于找到解题的通法,进一步归纳出解题的程序:“无棱补棱,先找再作,作法三种”.以下结合实例加以阐明.  相似文献   

16.
二面角和它的平面角的概念及其大小的计算,是立体几何教学中的一大重点和难点,也是历年高考的重点和热点.之所以说它是重点,是因为它是立体几何证明和解题常用的概念和手段,说它是难点,是因为二面角的大小不能直接度量,需要借助于它的平面角,而平面角的概念又有其灵活性和难以把握的地方,为此从二面角的定义出发,并综合其他知识对二面角的直接求法和间接求法进行归纳和总结.  相似文献   

17.
18.
在立体几何中有一类球的内切和外切问题,立体图很难作,而且在求解过程中对学生的空间想象能力要求较高,它是培养学生空间想象能力的很好载体,现举例如下.  相似文献   

19.
数列是一种特殊的函数,也是高中数学的重点内容.数列与中学数学其他部分知识如函数、方程、不等式、解析几何、二项式定理等有紧密的联系.数列的递推形式和差分方法,又形成了其独有的鲜明特征和递推思想,因此一直是每年高考的重点、热点,在高考中占有重要的地位.今年各地高考试卷,数列部分内容的分值约占总分的12%左右,大多是  相似文献   

20.
求解二面角的大小,关键是找作二面角的平面角,平面角如何找作?找作在什么位置上?是解决该问题的关键所在.本文就从二面角的平面角定义出发,构建一种简单易行的找作二面角的平面角思维线索——四垂一垂法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号