共查询到20条相似文献,搜索用时 15 毫秒
1.
二面角是立体几何的一个重要概念,二面角的平面角的求法是立体几何中的一个重点,也是难点,其中以多面体为载体的二面角的计算问题还是一个热点.在此,我们利用极限和函数思想方法来探求一类二面角的取值范围. 相似文献
2.
20 0 4年高考数学 (湖北卷 )理科第 19题 :如图 1,在Rt△ABC中 ,已知BC =a ,若长为 2a的线段PQ以点A为中点 ,问PQ与BC的夹角θ取何值时 ,BP·CQ的值最大 ?并求出这个最大值 .1 基本解法本题主要考查向量的概念 ,平面向量的运算法则 ,考查运用向量及函数知识的能力 .解法Ⅰ ∵AB⊥AC ,故AB·AC =0 .∵AP =- AQ ,BP =AP- AB ,CQ =AQ -AC ,∴BP·CQ =(AP -AB)· (AQ -AC)=AP· AQ - AP· AC- AB· AQ +AB·AC=-a2 -AP·AC +AB·AP=-a2 +AP· (AB- AC)=-a2 +12 PQ·BC=-a2 +a2 cosθ .当cosθ=1,即θ =0 (… 相似文献
3.
求二面角的大小是历届高考的重点内容之一,其关键是要作出二面角的平面角,这恰好是不少同学感到头疼的问题,下面介绍几种作二面角的平面角的常用技巧。 相似文献
4.
2004年高考数学(湖北卷)理科第19题: 如图1,在Rt△ABC中,已知BC=a,若长为2a的线段PQ以点A为中点,问PQ与BC的夹角θ取何值时,BP·CQ的值最大?并求出这个最大值. 相似文献
5.
200 4年高考数学试题 (必修 选修Ⅱ )第 ( 2 0 )题是这样的 :如图 1,已知四棱锥P—ABCD ,PB⊥AD ,侧面PAD为边长等于 2的正三角形 ,底面ABCD为菱形 ,侧面PAD与底面ABCD所成的二面角为12 0° .(Ⅰ )求点P到平面ABCD的距离 ;(Ⅱ )求面APB与面CPB所成的二面角的大小 .高考结束后 ,笔者对 2 0名考生进行了高考数学试题答卷情况专题访谈 ,从中获悉 ,很多考生在解答本题设问 (Ⅱ )时质量不高 .究其原因考生在解题的思想和方法上缺乏灵活性和深刻性 .今在正确解答设问 (Ⅰ )的基础上 ,系统归纳求解设问 (Ⅱ )的基本思想方法(不同于… 相似文献
6.
7.
8.
9.
2004年全国高考文(理)解几试题是:设椭圆x2/m 1 y2=1的两个焦点是F1(-c,0)与F2(c,0),(c>0),且椭圆上存在点P,使直线PF1与直线PF2垂直,(1)求实数m的取值范围;(2)设l是相应于焦点F2的准线,直线PF2与l相交于点Q,若|OF2|/|PF2|=2-3~(1/2),求直线PF2的方程.本题解法较多,这里仅给出其中一种解法.解(1)∵PFl1⊥PF2,∴点P在以线段F1F2的圆上,且半径为c=m~(1/2),又点P在已知椭圆上,椭圆的短半轴长为b= 相似文献
10.
题目如图1,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点.(Ⅰ)试确定点F的位置,使得D1E⊥平面AB1F;(Ⅱ)当D1E⊥平面AB1F时,求二面角C1-EF-A的大小.(结果用反三角函数值表示) 相似文献
11.
第 4 4届IMO第四题 :设ABCD是一个圆内接四边形 .从点D向直线BC、AC和AB作垂线 ,其垂足分别为P、Q和R .证明 :PQ =QR的充分必要条件是∠ABC的平分线、∠ADC的平分线和AC这三条直线相交于一点 .现证明该命题对任意凸四边形均成立 .图 1证明 :如图 1 ,连结QR、QP、AD、DC .因为DR⊥AR ,AQ⊥QD ,所以 ,A、R、D、Q四点共圆 ,且AD为该圆直径 .故QR =ADsin∠QDR =ADsin∠BAC .同理 ,QP =DCsin∠ACB .由△ABC及正弦定理有sin∠BACsin∠ACB=BCAB.所以 ,QRQP=ADsin∠BACDCsin∠ACB=AD·BCDC·AB.故QR =Q… 相似文献
12.
高中数学一些教学辅导资料中有类似这样一道题:在二面角α-α-β中,若A∈α且A到α-的距离是A到β距离的∫2倍,求二面角α-α-β的大小? 相似文献
13.
14.
平面解析几何包括直线和圆、圆锥曲线两部分内容.主要考查直线和圆的方程,椭圆、双曲线、抛物线的定义、标准方程、几何性质,以及直线与二次曲线的位置关系和求轨迹方程等内容,涉及的数学思想方法主要有数形结合的思想、等价转化的思想、分类讨论的思想、以及配方法、换元法、待定系数法等数学方法.今年各地的高考试题中,解析几何试题一般在选择题、填空题中有1~2道,解答题一道, 相似文献
15.
毛金才 《河北理科教学研究》2005,(2):38-39
求二面角大小是立体几何的重点与难点.如何化解此难点,关键在于找到解题的通法,进一步归纳出解题的程序:“无棱补棱,先找再作,作法三种”.以下结合实例加以阐明. 相似文献
16.
二面角和它的平面角的概念及其大小的计算,是立体几何教学中的一大重点和难点,也是历年高考的重点和热点.之所以说它是重点,是因为它是立体几何证明和解题常用的概念和手段,说它是难点,是因为二面角的大小不能直接度量,需要借助于它的平面角,而平面角的概念又有其灵活性和难以把握的地方,为此从二面角的定义出发,并综合其他知识对二面角的直接求法和间接求法进行归纳和总结. 相似文献
17.
18.
在立体几何中有一类球的内切和外切问题,立体图很难作,而且在求解过程中对学生的空间想象能力要求较高,它是培养学生空间想象能力的很好载体,现举例如下. 相似文献
19.
数列是一种特殊的函数,也是高中数学的重点内容.数列与中学数学其他部分知识如函数、方程、不等式、解析几何、二项式定理等有紧密的联系.数列的递推形式和差分方法,又形成了其独有的鲜明特征和递推思想,因此一直是每年高考的重点、热点,在高考中占有重要的地位.今年各地高考试卷,数列部分内容的分值约占总分的12%左右,大多是 相似文献
20.
求解二面角的大小,关键是找作二面角的平面角,平面角如何找作?找作在什么位置上?是解决该问题的关键所在.本文就从二面角的平面角定义出发,构建一种简单易行的找作二面角的平面角思维线索——四垂一垂法. 相似文献