首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
圆锥曲线的中点弦问题是解析几何的常见问题.本文结合中心对称和曲线系的有关知识来谈谈这类问题的一般解法.  相似文献   

2.
在解析几何中,与中点弦有关的问题历来是解几的热点内容之一.若已知弦的中点M的坐标为M(a,b),则可设弦AB的两个端点的坐标分别为A(a s,b t)、B(a-s,b-t),其独特功能是:将弦的两个端点的坐标与中点坐标  相似文献   

3.
二次曲线上任意两点连线叫做弦,以P(x_0,y_0)为中点的弦称为二次曲线关于P的中点弦.我们知道,若P不为有心二次曲线的中心,则P的中点弦是唯一的. 定理设P(x_0,y_0)为二次曲线Ax~2 Bxy Cy~2 Dx Ey F=0内部一点(异于中心),则P的中点弦所在的直线方程为  相似文献   

4.
点差法在解决与中点有关的问题时确实很有用。它通过“设点”、“作差”两个步骤。就产生了弦的中点和弦所在直线的斜率,巧妙地避免了解方程组求交点的复杂运算,使问题轻松获解。与常规解法相比,其优越性显而易见。  相似文献   

5.
张书霞 《成才之路》2011,(11):83-83
平面解析几何具有数形结合与转换的特征,具体的就是对问题中的条件和结论,既分析其代数意义,又分析其几何意义,力图在代数与几何的结合上寻找解题的思路与方法。本文借两道典型题对这一问题作一初步探讨,仅供参考。一、引例及解法分析例1.过A(6,1)作双曲线x2-4y2=16的弦,此弦被A平分,求该弦所在的直线方程。  相似文献   

6.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

7.
在教学过程中,笔者发现学生遇到二次曲线的中点弦问题时,都会束手无策,并且思路也比较混乱,很多数学报刊杂志都介绍过中点弦问题,甚至给出了公式的结论,但结论都较复杂,不够清楚、完整,鉴于这种情况,本人对二次曲线的中点弦问题谈谈自己的看法.  相似文献   

8.
首先来讨论形如:mx2 ny2=1(m,n均为非零常数)的二次曲线C.假设点M(x0,y0)是曲线C的一条弦的中点(其中x0,y0不同时为0),则有如下结论:图1定理1以点M(x0,y0)为中点的弦所在的直线的方程为:mx0(x-x0) ny0(y-y0)=0.证明设弦的两个端点分别为A(x1,y1),B(x2,y2),则x2=2x0-x1,y2=2y0-y  相似文献   

9.
对于直线与椭圆的位置关系问题,我们经常联立方程,再利用二次方程的判别式与韦达定理进行求解.但是,这种方法运算量较大,有时候容易出错.对于一些与弦中点有关的问题可以借助另外一种方法——点差法进行求解.  相似文献   

10.
如果二次曲线的弦AB以M为中点,则称AB为点M的中点弦。文[1]、[2]先后讨论了二次曲线中点弦的存在性问题,但均用到了超出中学数学范围的知识。能否用通常的解析几何方法讨论其存在性问题?能否直接根据点M的位置而确定其中点弦所在直线的方程以及中点弦的弦长?本文对这几个问题均予以肯定的回答。  相似文献   

11.
这类问题已有一般解法,本文拟分三种情况讨论。一、求平行弦的中点轨迹例1.已知椭圆x~2/a~2+y~2/b~2=1(a>b>0),求斜率是k的平行弦的中点轨迹。解设弦的两端点为P_j(x_j,y_j)(j=1,2),中点为P(x,y)。则有  相似文献   

12.
设Γ为任意一条二次曲线,若Γ的过点 P 的弦 l 被P平分,则称 l 为Γ的以 P 为中点的中点弦,文[1]、[2]等均讨论过中点弦的存在问题,本文则在假定中点弦存在时给出统一的中点弦方程.  相似文献   

13.
中点弦问题是直线与圆锥曲线相交的典型题型,可通过一元二次方程的根与系数的关系或用点差法求解.若在客观题中解决圆锥曲线的中点弦问题用这两种方法未免耗时太多.应用圆锥曲线的中点弦公式,能快速解决这类圆锥曲线中点弦的客观题.  相似文献   

14.
中点问题是平面几何中的一类典型问题,通常归结为线段相等问题加以解决,但若抓住其不同于一般线段相等问题的特点,可以实现妙思巧解.一、倍中线法倍中线法的基本思想是将某个三角形的某条中线延长一倍,得到全等三角形.将相关的边角集中到某个三角形中,以便解决问题.例1如图1,AB  相似文献   

15.
我们知道,若M(x,y)是线段AB的中点,且A为(x+u,y+ku),k为AB的斜率,则B的坐标为(x-u,y-hu),利用这种表达方法解一些有关中点的几何问题显得方便,兹举例如下: 例一:过点P(1,2)作椭圆x~2/(16)+y~2/9=1的弦AB,  相似文献   

16.
中点问题是平面几何中的一类典型问题,通常归结为线段相等问题加以解决.但若抓住其不同于一般线段相等问题的特点,可以实现妙思巧解.  相似文献   

17.
在解二次曲线中点弦有关问题时,可应用过两点的曲线束方程中唯一的直线方程得到一套中点弦公式,这些公式容易导出,且特点明显便于记忆和掌握,应用它解题非常简便。一直线与椭圆b~2x~2+a~2y~2=a~2b~2相交于A、B两点  相似文献   

18.
求二次曲线以已知点为中点的弦的方程和弦的中点轨迹问题,已有不少文章论及,提出了许多不同的解法。本文从直线与二次曲线族的位置关系出发,也对这类问题进行一些探讨。一、二次曲线以已知点为中点的弦的方程我们知道,若直线l与圆心为O,半径为r的圆相切于P点,则任一以O为圆心,半径大于r的圆截l所得的弦都以P为中点。故给出点P(x_0,y_0)(异于原点)和圆x~2 y~2=R~2,当R~2>x_0~2 y_0~2时,要求以P为中点的弦所在直线的方程,只须在以原点为圆心的圆族x~2 y~2=r~2内,求出圆x~2 y~2=x_0~2 y_0~2在P点的切线方程即可,其方程为x_0x y_0y=x_0~2 y_0~2,即  相似文献   

19.
求动弦的中点轨迹,历来都是高考的重点、难点,也是热点.本文介绍三种解法、思路新颖、清晰、解法简捷、达到化繁为简,化难为易目的.1用中心对称求二次曲线弦的中点轨迹我们知道,圆锥曲线1C:F(x,y)=0,关于点00M(x,y)中心对称的曲线2C的方程是:00F(2x?x,2y?y)=0.若曲线1C和2C相交  相似文献   

20.
如果二次曲线的弦AB以M为中点,则称AB为过点M的中点弦.中点弦问题是中学解析几何中的典型问题,它的存在性容易忽视.本文探究根据二次曲线方程及中点M的坐标判断中点弦的存在性及弦的方程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号