首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>线性规划问题因其内容比较抽象、复杂,一直以来都是同学们学习的难点,也是高考考查的一个重点,特别是线性规划与均值不等式知识、与指数函数知识的交汇更是考查的难点,下面就这两点进行举例分析,希望能为同学们的学习提供帮助。一、线性规划与均值不等式知识交汇例1已知关于x的方程x2-ax+2-b=0的两个根分别在区间[0,1)与(1,2]上,且z=ma+nb(m>0,n>0,且m<2n)的最  相似文献   

2.
在高考中线性规划题型的考查往往是以与其他知识相交汇的方式出现的,比如与函数、方程、不等式、数列等知识相交汇.有时目标函数以非线性目标函数的方式出现,以此考查学生对知识的识别和驾驭能力.本文对其中几个热点问题进行探讨.1线性规划与均值不等式的交汇例1设x,y满足约束条件3x-y-6[0x-y+2\0x\0,y\0,若目标函数z=ax+by(a>0,b>0)的最大值为12.则2a+3b的最小值为().  相似文献   

3.
<正>线性规划基本模式是已知两个变量x,y的线性约束条件,求z=f(x,y)的范围.但是,常会遇到一些与线性规划似乎不相关的求最值(范围)的问题,其实,只要作深入分析,不难发现均能化归为线性规划问题去求解.本文列举八类这样的交汇问题进行剖析,与读者共赏.一、线性规划与函数交汇例1设二元一次不等式组  相似文献   

4.
我们知道:如果a_i∈R~+ i=1,2,…,n,则((a_1+a_2+…a_n)/n≥(a_1a_2…a_n)~(1/n)当且仅当a_1=a_2=a_3…=a_n时取“=”号),被称为“均值定理”。许多极(最)值问题,利用这个平均值不等式常常很简洁地得到解决,本文通过数例。对利用其求极(最)值时常见错误进行剖析。  相似文献   

5.
山东省2009年高考数学试题数列与不等式的解答题为:等比数列{an}的前n项和为Sn,已知对任意的nEN+,点(n,Sn)均在函数y=b+r(b>0且b≠1,b,r均为常数)的图像上.(1)求r的值;(2)当b=2时,记bn=2(㏒2an+1)(n∈N+),证明:对任意的n∈N+,不等式b1+1/b1·b2+1/b2……bn+1/bn>√n+1成立.  相似文献   

6.
<正>一、题目在讲完一元二次不等式这节内容后,有这样一道课后的习题:设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m0的解集;(2)若a>0,且0相似文献   

7.
平均值不等式是高中数学的重要内容 ,熟练掌握二元和三元均值不等式及其变形应用 ,可以巧妙地解决许多数学题 .1 证明不等式这是最为大家常见问题 ,问题解决的关键是怎样根据题目提供的隐含条件去构造二元或三元均值不等式 .例 1 已知 x,y,z∈ R+且满足 xyz(x +y + z) =1 ,求证 :(x + y) (y + z)≥ 2 .证明 :(x + y) (y + z) =xy + xz + y2 + yz =y(x + y + z) + xz =y . 1xyz+ xz =1xz+ xz≥ 2 1xz. xz =2 .证毕 .此题从“2”这个数字 ,提示我们构造二元均值不等式 .2 求最值高中数学很多地方涉及求最值 ,利用均值不等式中等号成立的条…  相似文献   

8.
最值问题中,有一类在给定条件下求最大值的问题,可用构造条件的方法求解。现介绍如下: 有关定理(柯西不等式): 对于任意实数a_i,b_i(i=1,2,…n),有:(a1b1+a2b2+…+a_nb_n)~2≤(a~21+a~22+…+a~2n)·(b~21+b~22+…+b~2n).其中,当且仅当a_i=kbi时取等号。 由柯西不等式,易得如下推论: 如果:(a~21+a~22+…+a~2n=S2(常数S>0) b~21+b~22+…+b~2n=t~2(常数t>0) 那么:a1b1+a2b2+…+a_nb_n≤S·t,当且仅当a_i/b_i=s/t(i=1,2,…,n)时,取等号,即a1b1+a2b2+…+a_nb_n有最大值s·t. 例1:已知:a2+b2+c2=1,求的最大值。 分析:为了利用推论,必须  相似文献   

9.
<正>利用数学归纳法证明不等式的关键是数学归纳法的第二步,而解决这一步的方法有放缩法与分析法。下面通过一道高考数学题的解答来说明这两种方法的运用。例题等比数列{a_n}的前n项和为Sn,已知对任意的n∈N_+,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图像上。(1)求r的值;(2)当b=2时,记bn=2(log_2a_n+1)(n∈N+),证明:对任意的n∈N_+,不等式  相似文献   

10.
<正>最值问题在高中数学中是经常遇到的一类题型,求最值的方法很多,但最常用的还是利用不等式规律,如均值不等式、柯西不等式等。下面就来谈谈利用柯西不等式求最值这种方法的应用。柯西不等式:设a_1,a_2,…,a_n与b_1,b_2,…,b_n是两组实数,则:(a_1b_1+a_2b_2+…+a_nb_n)2≤(a_12≤(a_12+a_22+a_22+…+a_n2+…+a_n2)(b_12)(b_12+b_22+b_22+…+b_n2+…+b_n2)。当向量(a_1,a_2,…,a_n)与(b_1,b_2,…,b_n)共线时,等号成立。例1设实数a,b,c,d,e满足:  相似文献   

11.
问题1(数学通报2020年第12期问题2576)2已知x>0,y>0,y3(5-2x3)=3,求P=2/x2+3y2的最小值.解法1:由3元均值不等式可得x2=1·x·x≤1/3(13+x3+x3),即x2≤1/3(1+2x3).  相似文献   

12.
<正>一、化归思想在函数中的运用例1已知函数y=x3-3x+c的图像与x轴相交有两个公共点,求c值。证明:因为y=x3-3x+c的图像与x轴相交有两个公共点,求c值。证明:因为y=x3-3x+c,所以y′=3x3-3x+c,所以y′=3x2-3=3(x+1)(x-1)。所以当x=±1时,函数存在极值。由于y_(x=1)=0或者是y_(x=-1)=0,就可以得出c-2=0或c+2=0,即c=±2。二、化归思想在不等式中的运用不等式是高中数学中较为重要的内容,这种解题方法通常会与函数方程进行进行紧  相似文献   

13.
引例若正实数m,n满足m+2n=3mn,求m+n的最小值解析:(法一)从数的角度思考,多以不等式相关知识求解,由题易得1/n+2/m=3,∴ m+n=1/3(1/n+2/m)(m+n)=1/3(m/n+1+2+2n/m),由基本不等式得m+n≥1/3(3+2√m/n·2n/m)=1+2√2/3(当且仅当m/n=2n/m时取等号).  相似文献   

14.
<正>在高考试题中,线性规划是高频考点,这类问题有两个难点:一是目标函数非线性;二是求线性规划问题中参数的取值范围.本文就第一类问题目标函数非线性,其最值的求法进行分类解析.一、斜率型例1已知实数x,y满足不等式{2x-y≥0,x+y-4≥0,x≤3,则2x3+y3+y3/x3/x2y的取值范围是____.解2x2y的取值范围是____.解2x3+y3+y3/x3/x2y=2·x/y+(y/x)2y=2·x/y+(y/x)2.令k=  相似文献   

15.
著名的均值不等式"若α1,α2,…,αn∈R ,则α1 α2 …αn/n≥(n√α1α2…αn),仅当α1=α2=…=an(n≥2,n∈N)时等号成立"是一个应用广泛的不等式,许多外形与它截然相异的函数式,常常也能利用它巧妙地求出最值,且运用均值定理求最值是历年来高考的热点内容.因此必须掌握利用重要不等式求函数的最值的方法和技巧.  相似文献   

16.
本文通过具体例题总结了基本不等式求一类题型(x+y)(a/x+b/y)(x,y,a,b都是正数)的最值.苏教版必修五给出了基本不等式的形式:ab1/2≤(a+b)/2(a≥0,b≥0),当且仅当a=b时取等号,其变形形式有a+b≥2ab1/2基本不等式的一个运用就是求最值:①当a≥0,b≥0时,若和a+b为定值P,则积ab有最大值ab≤p2/4,当且仅当a=b时取等号;②当a≥0,b≥0时,若积ab为定值S,则和a+b有最小值a+b≥2S1/2,当且仅当a=b时取等号.我们来看下面3个问题:问题1:已知x,y为正数,求(x+y)(1/x+4/y)的最小值.问题2:已知z,y为正数且满足1/x+1/y=2,求x+2y的最小值.  相似文献   

17.
<正>均值不等式是高中数学不等式的一个重要内容,是历年高考与竞赛的命题热点和重点考查内容之一,它在证明不等式、求最值以及实际问题中有着广泛的应用.本文就均值不等式搭桥妙解数学高考题与竞赛题举例介绍如下,以作探讨.例1已知a,b为正实数,2b+ab+a=30,求关于a、b的函数y=1/ab的最小值.分析这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元  相似文献   

18.
1应用均值不等式(a+b/2)≥ab~(1/2)(a>0,b>0)求最值例1过点A(1,4)的直线l在两坐标轴上的截距均为正数,则使两截距之和最小的直线l的方程?解析欲使直线l的两截距之和最小,即在x轴上截距为1+ta4nα,在y轴上截距为4+tanα,因而5+tanα+ta4nα最小,于是有5+tanα+ta4nα≥9.等号成立的条件:当且仅当tanα=tan4α,即tan2α=4,∴tanα=±2(舍去-2),∴k=tanβ=-tanα=-2,∴y=-2x+b.又直线l过(1,4)点,∴b=6.故所求直线l方程为2x+y-6=0.评注利用均值不等式一定要注意等号成立的条件及适用的范围.2利用数形结合求最值图1例2一束光线从A(1,-1)出发经x轴反射到圆C:(x-2)2+(y-3)2=1上的最短路程是多少?解析圆C的圆心坐标为(2,3)半径r=1,点A(-1,1)关于x轴的对成点A′的坐标为(-1,1),因A′在反射线上,所以最短的距离为│A′C│-r-│A′B│,直线A′C的方程为4x-3y+1=0,即B-14,0,如图1.│A′B│=-1+412+12=45,│A′C│=(2+1)2+(3+1)2=5...  相似文献   

19.
<正>《数学通报》1863号问题:设x、y>0且x+2y=3,求1x3+2y3的最小值.该问题从登刊以来就引起很多数学爱好者的关注和研究,笔者查阅相关文献[1]—[5],发现各位学者主要从构造"数字式","均值不等式","轮换式"三个不同的切入点着手演绎这道征题.本文另辟蹊径给出一种构思独特的解答,现整成拙文与同行交流.柯西不等式:若xi、yi>0则∑n i=1(xiy)  相似文献   

20.
均值不等式是一个用途宽广的重要不等式,因而高考中作为重点常考常新.本文以高考试题为例介绍它在证明不等式、求最大(小)值、大小比较、求取值范围以及求值等方面的应用. 例1 已知i,m,n是正整数,且1(1+n)m. (2001年高考) 证明由n元均值不等式,得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号