首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Maternity care in the United States is intervention intensive. The routine use of intravenous fluids, restrictions on eating and drinking, continuous electronic fetal monitoring, epidural analgesia, and augmentation of labor characterize most U.S. births. The use of episiotomy is far from restrictive. These interventions disturb the normal physiology of labor and birth and restrict women’s ability to cope with labor. The result is a cascade of interventions that increase risk, including the risk of cesarean surgery, for women and babies. This article is an updated evidence-based review of the “Lamaze International Care Practices That Promote Normal Birth, Care Practice #4: No Routine Interventions,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

2.
In the United States, obstetric care is intervention intensive, resulting in 1 in 3 women undergoing cesarean surgery wherein mobility is treated as an intervention rather than supporting the natural physiologic process for optimal birth. Women who use upright positions and are mobile during labor have shorter labors, receive less intervention, report less severe pain, and describe more satisfaction with their childbirth experience than women in recumbent positions. This article is an updated evidence-based review of the “Lamaze International Care Practices That Promote Normal Birth, Care Practice #2: Freedom of Movement Throughout Labor,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

3.
All women should be allowed and encouraged to bring a loved one, friend, or doula to their birth without financial or cultural barriers. Continuous labor support offers benefits to mothers and their babies with no known harm. This article is an updated evidence-based review of the “Lamaze International Care Practices that Promote Normal Birth, Care Practice #3: Continuous Labor Support,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

4.
In this column, the author reprises recent selections from the Lamaze International research blog, Science & Sensibility. Each selection discusses a new study that demonstrates the “First, do no harm” principle in a different way. New research on the potentially harmful effects of intravenous lines demonstrates that refraining from routine interventions in labor protects the safety of women and babies. A new systematic review of movement and position changes in labor shows that eliminating unfounded restrictions also protects maternal and infant health and well-being. Finally, a study of patterns of use of neonatal intensive care units reveals how the organization of the maternity care system itself can affect the health outcomes of its beneficiaries.  相似文献   

5.
Mothers and babies have a physiologic need to be together at the moment of birth and during the hours and days that follow. Keeping mothers and babies together is a safe and healthy birth practice. Evidence supports immediate, uninterrupted skin-to-skin care after vaginal birth and during and after cesarean surgery for all stable mothers and babies, regardless of feeding preference. Unlimited opportunities for skin-to-skin care and breastfeeding promote optimal maternal and child outcomes. This article is an updated evidence-based review of the “Lamaze International Care Practices That Promote Normal Birth, Care Practice #6: No Separation of Mother and Baby, With Unlimited Opportunities for Breastfeeding,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

6.
Women in the United States are still giving birth in the supine position and are restricted in how long they can push and encouraged to push forcefully by their caregivers. Research does not support these activities. There is discussion about current research and suggestions on how to improve the quality of the birth experience. This article is an updated evidence-based review of the “Lamaze International Care Practices That Promote Normal Birth, Care Practice #5: Spontaneous Pushing in Upright or Gravity-Neutral Positions,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

7.
Worth the Wait     
In this column, the editor of The Journal of Perinatal Education discusses disadvantages of not waiting for labor to begin on its own and the effects of elective induction and cesarean surgery. The editor also describes the contents of this issue, which offer a broad range of resources, research, and inspiration for childbirth educators in their efforts to promote, support, and protect natural, safe, and healthy birth.  相似文献   

8.
Many behaviors and substances have been purported to induce labor. Using data from the Third Pregnancy, Infection, and Nutrition cohort, we focus on 663 women who experienced spontaneous labor. Of the women who reported a specific labor trigger, 32% reported physical activity (usually walking), 24% a clinician-mediated trigger, 19% a natural phenomenon, 14% some other physical trigger (including sexual activity), 12% reported ingesting something, 12% an emotional trigger, and 7% maternal illness. With the exceptions of walking and sexual intercourse, few women reported any one specific trigger, although various foods/substances were listed in the “ingesting something” category. Discussion of potential risks associated with “old wives’ tale” ways to induce labor may be warranted as women approach term.  相似文献   

9.
In January 2010, Women’s Health Issues published two direction-setting reports from the Transforming Maternity Care (TMC) Project: “2020 Vision for a High-Quality, High-Value Maternity Care System” and “Blueprint for Action: Steps Toward a High-Quality, High-Value Maternity Care System.” This guest editorial summarizes highlights of the implementation phase of what is now known as the TMC Partnership. Major progress has been made in elevating maternity care quality to a national policy priority, increasing the availability and use of maternity care performance measures, and developing shared decision making tools for childbearing women.  相似文献   

10.
11.
This updated edition of Care Practice Paper #1 presents the evidence for the benefits of allowing labor to begin on its own. The physiology of normal labor is contrasted with medical induction methods, and the potential harms of elective induction are reviewed. Women are encouraged to avoid induction of labor unless there is a medical reason.  相似文献   

12.
This study used focus groups to assess the feasibility and acceptability of adapting an Embodied Conversational Agent (ECA) to support decision-making about mode of birth after previous cesarean. Twelve women with previous cesareans, and eight prenatal providers at an academic, tertiary-care medical center, viewed a prototype ECA and were asked to share feedback on the potential role in helping women prepare for decision-making. Both groups felt that although it was somewhat “robot-like,” the ECA could provide easy access to information for patients and could augment the visit with providers. Future work is needed to improve ECA visual appeal and clarify the role and timing for utilization of decision aids using ECA technology to enhance the shared decision-making process.  相似文献   

13.
A standard genetic/bioinformatic activity in the genomics era is the identification within DNA sequences of an "open reading frame" (ORF) that encodes a polypeptide sequence. As an educational introduction to such a search, we provide a webapp that composes, displays for solution, and then solves short DNA exemplars with a single ORFTo the Editor: We wish to bring a new Web resource to the attention of CBE—Life Sciences Education readers.When being introduced to the central dogma of nucleic acid transactions, students are often required to identify the 5′→3′ DNA template strand in a double-stranded DNA (dsDNA) molecule; transcribe an antiparallel, complementary 5′→3′ mRNA; and then translate the mRNA codons 5′→3′ into an amino acid polypeptide by means of the genetic code table. Although this algorithm replicates the molecular genetic process of protein synthesis, experience shows that the series of left/right, antiparallel, and/or 5′→3′ reversals is confusing to many students when worked by hand. Students may also obtain the “right” answer for the “wrong” reasons, as when the “wrong” DNA strand is transcribed in the “wrong” 3′→5′ direction, so as to produce a string of letters that “translates correctly.”In genetics and bioinformatics education, we have found it more intuitively appealing to demonstrate and emphasize the equivalence of the mRNA to the DNA sense strand complement of the template strand. The sense strand is oriented in the same 5′→3′ direction and has a sequence identical to the mRNA, except for substitution of thymidine in the DNA for uracil in the mRNA. It is thus more computationally efficient to “read” the polypeptide sequence directly from this strand, with mental substitution of thymidine in the triplets of the genetic code table. (By definition, “codons” occur only in mRNA: the equivalent three-letter words in the DNA sense strand may be designated “triplets.”) This is the same logic used in DNA “translation” software programs.A further constraint often imposed on dsDNA teaching exemplars is that five of the six possible reading frames are “closed” by the occurrence of one or more “stop” triplets, and only one is an open reading frame (ORF) that encodes an uninterrupted polypeptide. We designate this the “5&1” condition. The task for the student is to identify the ORF and “translate” it correctly. Other considerations include correct labeling of the sense and template DNA strands, their 5′ and 3′ ends (and of the mRNA as required), and the amino (N) and carboxyl (C) termini of the polypeptide.Thus, instructors face the logistical challenge of creating dsDNA sequences that satisfy the “5&1” condition for homework and exam questions. Instructors must compose sequences with one or more “stops” in the three overlapping read frames of one strand, while simultaneously creating two “stopped” frames and one ORF in the other. We have explored these constraints as an algorithmic and computational challenge (Carr et al., 2014 ). There are no “5&1” exemplars of length L ≤ 10, and the proportion of exemplars of length L ≥ 11 is very small relative to the 4L possible sequences (e.g., 0.0023% for L = 11, 0.048% for L = 15, 0.89% for L = 25). This makes random exploration for such exemplars inefficient.We therefore developed a two-stage recursive search algorithm that samples 4L space randomly to generate “5&1” exemplars of any specified length L from 11 ≤ L ≤ 100. The algorithm has been implemented as a Web application (“RandomORF,” available at www.ucs.mun.ca/~donald/orf/randomorf). Figure 1 shows a screen capture of the successive stages of the presentation. The application requires JavaScript on the computer used to run the Web browser.Open in a separate windowFigure 1.Successive screen captures of the webapp RandomORF. First panel: the Length parameter is the desired number of base pairs. Second panel: Clicking the “Generate dsDNA” button shows the dsDNA sequence to be solved, with labeled 5′ and 3′ ends. The button changes to “Show ORF.” Third panel: A second click shows the six reading frames, with the ORF highlighted. Here, the ORF is in the sixth reading frame on the bottom (sense) strand. The polypeptide sequence, read right to left, is N–EITHLRL–C, where N and C are the amino and carboxyl termini, respectively. The conventional IUPAC single-letter abbreviations for amino acids are centered over the middle base of the triplet; stop triplets are indicated by asterisks (*).The webapp provides a means for students to practice identifying ORFs by efficiently generating many examples with unique solutions (Supplemental Material); this can take the place of the more standard offering of a small number of set examples with an answer key. The two-stage display makes it possible for problems to be worked “cold,” with the correct ORF identified only afterward. For examinations, any exemplar may be presented in any of four ways, by transposing the top and bottom strands and/or reversing the direction of the strands left to right. Presentation of the 5′ end of the sense strand at the lower left or upper or lower right tests student recognition that sense strands are always read in the 5′→3′ direction, irrespective of the “natural” left-to-right and/or top-then-bottom order. We intend to modify the webapp to include other features of pedagogical value, including constraints on [G+C] composition and the type, number, and distribution of stop triplets. We welcome suggestions from readers.  相似文献   

14.
The scale and importance of Vision and Change in Undergraduate Biology Education: A Call to Action challenges us to ask fundamental questions about widespread transformation of college biology instruction. I propose that we have clarified the “vision” but lack research-based models and evidence needed to guide the “change.” To support this claim, I focus on several key topics, including evidence about effective use of active-teaching pedagogy by typical faculty and whether certain programs improve students’ understanding of the Vision and Change core concepts. Program evaluation is especially problematic. While current education research and theory should inform evaluation, several prominent biology faculty–development programs continue to rely on self-reporting by faculty and students. Science, technology, engineering, and mathematics (STEM) faculty-development overviews can guide program design. Such studies highlight viewing faculty members as collaborators, embedding rewards faculty value, and characteristics of effective faculty-development learning communities. A recent National Research Council report on discipline-based STEM education research emphasizes the need for long-term faculty development and deep conceptual change in teaching and learning as the basis for genuine transformation of college instruction. Despite the progress evident in Vision and Change, forward momentum will likely be limited, because we lack evidence-based, reliable models for actually realizing the desired “change.”
All members of the biology academic community should be committed to creating, using, assessing, and disseminating effective practices in teaching and learning and in building a true community of scholars. (American Association for the Advancement of Science [AAAS], 2011 , p. 49)
Realizing the “vision” in Vision and Change in Undergraduate Biology Education (Vision and Change; AAAS, 2011 ) is an enormous undertaking for the biology education community, and the scale and critical importance of this challenge prompts us to ask fundamental questions about widespread transformation of college biology teaching and learning. For example, Vision and Change reflects the consensus that active teaching enhances the learning of biology. However, what is known about widespread application of effective active-teaching pedagogy and how it may differ across institutional and classroom settings or with the depth of pedagogical understanding a biology faculty member may have? More broadly, what is the research base concerning higher education biology faculty–development programs, especially designs that lead to real change in classroom teaching? Has the develop-and-disseminate approach favored by the National Science Foundation''s (NSF) Division of Undergraduate Education (Dancy and Henderson, 2007 ) been generally effective? Can we directly apply outcomes from faculty-development programs in other science, technology, engineering, and mathematics (STEM) disciplines or is teaching college biology unique in important ways? In other words, if we intend to use Vision and Change as the basis for widespread transformation of biology instruction, is there a good deal of scholarly literature about how to help faculty make the endorsed changes or is this research base lacking?In the context of Vision and Change, in this essay I focus on a few key topics relevant to broad-scale faculty development, highlighting the extent and quality of the research base for it. My intention is to reveal numerous issues that may well inhibit forward momentum toward real transformation of college-level biology teaching and learning. Some are quite fundamental, such as ongoing dependence on less reliable assessment approaches for professional-development programs and mixed success of active-learning pedagogy by broad populations of biology faculty. I also offer specific suggestions to improve and build on identified issues.At the center of my inquiry is the faculty member. Following the definition used by the Professional and Organizational Development Network in Higher Education (www.podnetwork.org), I use “faculty development” to indicate programs that emphasize the individual faculty member as teacher (e.g., his or her skill in the classroom), scholar/professional (publishing, college/university service), and person (time constraints, self-confidence). Of course, faculty members work within particular departments and institutions, and these environments are clearly critical as well (Stark et al., 2002 ). Consequently, in addition to focusing on the individual, faculty-development programs may also consider organizational structure (such as administrators and criteria for reappointment and tenure) and instructional development (the overall curriculum, who teaches particular courses). In fact, Diamond (2002) emphasizes that the three areas of effort (individual, organizational, instructional) should complement one another in faculty-development programs. The scope of the numerous factors impacting higher education biology instruction is a realistic reminder about the complexity and challenge of the second half of the Vision and Change endeavor.This essay is organized around specific topics meant to be representative and to illustrate the state of the art of widespread (beyond a limited number of courses and institutions) professional development for biology faculty. The first two sections focus on active teaching and biology students’ conceptual understanding, respectively. The third section concerns important elements that have been identified as critical for effective STEM faculty-development programs.  相似文献   

15.
The discursive construction of the human placenta varies greatly between hospital and home-birthing contexts. The former, driven by medicolegal discourse, defines the placenta as clinical waste. Within this framework, the placenta is as much of an afterthought as it is considered the “afterbirth.” In home-birth practices, the placenta is constructed as a “special” and meaningful element of the childbirth experience. I demonstrate this using 51 in-depth interviews with women who were pregnant and planning home births in Australia or had recently had home births in Australia. Analysis of these interviews indicates that the discursive shift taking place in home-birth practices from the medicalized model translates into a richer understanding and appreciation of the placenta as a spiritual component of the childbirth experience. The practices discussed in this article include the burial of the placenta beneath a specifically chosen plant, consuming the placenta, and having a lotus birth, which refers to not cutting the umbilical cord after the birth of the child but allowing it to dry naturally and break of its own accord. By shifting focus away from the medicalized frames of reference in relation to the third stage of labor, the home-birthing women in this study have used the placenta in various rituals and ceremonies to spiritualize an aspect of birth that is usually overlooked.  相似文献   

16.
17.
Instructors attempting new teaching methods may have concerns that students will resist nontraditional teaching methods. The authors provide an overview of research characterizing the nature of student resistance and exploring its origins. Additionally, they provide potential strategies for avoiding or addressing resistance and pose questions about resistance that may be ripe for research study.
“What if the students revolt?” “What if I ask them to talk to a neighbor, and they simply refuse?” “What if they do not see active learning as teaching?” “What if they just want me to lecture?” “What if my teaching evaluation scores plummet?” “Even if I am excited about innovative teaching and learning, what if I encounter student resistance?”
These are genuine concerns of committed and thoughtful instructors who aspire to respond to the repeated national calls to fundamentally change the way biology is taught in colleges and universities across the United States. No doubt most individuals involved in promoting innovative teaching in undergraduate biology education have heard these or variations on these fears and concerns. While some biology instructors may be at a point where they are still skeptical of innovative teaching from more theoretical perspectives (“Is it really any better than lecturing?”), the concerns expressed by the individuals above come from a deeply committed and practical place. These are instructors who have already passed the point where they have become dissatisfied with traditional teaching methods. They have already internally decided to try new approaches and have perhaps been learning new teaching techniques themselves. They are on the precipice of actually implementing formerly theoretical ideas in the real, messy space that is a classroom, with dozens, if not hundreds, of students watching them. Potential rejection by students as they are practicing these new pedagogical skills represents a real and significant roadblock. A change may be even more difficult for those earning high marks from their students for their lectures. If we were to think about a learning progression for faculty moving toward requiring more active class participation on the part of students, the voices above are from those individuals who are progressing along this continuum and who could easily become stuck or turn back in the face of student resistance.Unfortunately, it appears that little systematic attention or research effort has been focused on understanding the origins of student resistance in biology classrooms or the options for preventing and addressing such resistance. As always, this Feature aims to gather research evidence from a variety of fields to support innovations in undergraduate biology education. Below, we attempt to provide an overview of the types of student resistance one might encounter in a classroom, as well as share hypotheses from other disciplines about the potential origins of student resistance. In addition, we offer examples of classroom strategies that have been proposed as potentially useful for either preventing student resistance from happening altogether or addressing student resistance after it occurs, some of which align well with findings from research on the origins of student resistance. Finally, we explore how ready the field of student resistance may be for research study, particularly in undergraduate biology education.  相似文献   

18.
This feature is designed to point CBE---Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research.This feature is designed to point CBE—Life Sciences Education readers to current articles of interest in life sciences education as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as “Abstract available,” full text may be accessible at the indicated URL for readers whose institutions subscribe to the corresponding journal.
  • 1. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, Wenderoth MP (2014). Active learning increases student performance in science, engineering, and mathematics. Proc Natl Acad Sci USA 111, 8410–8415. [Abstract available at www.pnas.org/content/111/23/8410.abstract]
Online publication of this meta-analysis last spring no doubt launched a legion of local and national conversations about how science is best taught—as the authors state the essential issue, “Should we ask or should we tell?” To assess the relative effectiveness of active-learning (asking) versus lecture-based (telling) methods in college-level science, technology, engineering, and mathematics (STEM) classes, the authors scoured the published and unpublished literature for studies that performed a side-by-side comparison of the two general types of methods. Using five predetermined criteria for admission to the study (described fully in the materials and methods section), at least two independent coders examined each potentially eligible paper to winnow down the number of eligible studies from 642 to 225. The working definition of what constitutes active learning (used to determine potential eligibility) was obtained from distilling definitions written by 338 seminar attendees; what constitutes lecture was defined as “continuous exposition by the teacher” (quoted from Bligh, 2000 ). The eligible studies were situated in introductory and upper-division courses from a full range of enrollment sizes and multiple STEM disciplines and included majors and nonmajors as participants. The frequency of use and types of active-learning methodologies described in the 225 eligible studies varied widely.Quantitative analysis of the eligible studies focused on comparison of two outcome variables: 1) scores on identical or formally equivalent examinations and 2) failure rates (receipt of a “D” or “F” grade or withdrawal from the course). Major findings were that student performance on exams and other assessments (such as concept inventories) was nearly half an SD higher in active-learning versus lecture courses, with an effect size (standardized mean weighted difference) of 0.47. Analyses also revealed that average failure rates were 55% higher for students in the lecture courses than in courses with active learning. Heterogeneity analyses indicated that 1) there were no statistically significant differences in outcomes with respect to disciplines; 2) effect sizes were lower when instructor-generated exams were used versus concept inventories with both types of courses (perhaps because concept inventories tend to require more higher-order thinking skills); 3) effect sizes were not significantly different in nonmajors versus majors courses or in lower versus upper-division courses; and 4) although active learning had the greatest positive effect in smaller-enrollment courses, effect sizes were higher with active learning at all enrollment sizes. Two types of analyses, calculation of fail-safe numbers and funnel plots, supported a lack of publication bias (tendency to not publish studies with low effect sizes). Finally, the authors demonstrated that there were no statistically significant differences in effect sizes despite variation in the quality of the controls on instructor and student equivalence, supporting the important conclusion that the differences in effectiveness between the two methods were not instructor dependent.In one of the more compelling sections of this meta-analysis, the authors translated the relatively dry numbers resulting from statistical comparisons to potential impacts on the lives of the students taking STEM courses. For example, for the 29,300 students reported for the lecture treatments across all students, the average difference in failure rates (21.8% in active learning vs. 33.8% with lecture) suggests that 3516 fewer students would have failed if enrolled in an active-learning course. This and other implications for the more beneficial impact of active learning on STEM students led the authors to state, “If the experiments analyzed here had been conducted as randomized controlled trials of medical interventions, they may have been stopped for benefit.” That is, the control group condition would have been halted because of the clear, beneficial effects of the treatment. The authors conclude by suggesting additional important implications for future undergraduate STEM education research. It may no longer be justified to conduct more “first-generation” research comparing active-learning approaches with traditional lecture; rather, for greater impact on course design, second-generation researchers should focus on what types and intensities of exposure to active learning are most effective for different students, instructors, and topics.This provocative commentary by Carl Weiman highlights the major findings reported in the Proceedings of the National Academy of Sciences by Freeman et al. (2014) and underscores the implications. The graphical representations displaying the key data on effect sizes and failure rates presented in the Freeman et al. meta-analysis are redrawn in the commentary in a way that is likely to be more familiar to the typical reader, making the differences in outcomes for active learning versus lecture appear more striking. Weiman concludes by elaborating on the important implications of the meta-analysis for college-level STEM educators and administrators, suggesting that it “makes a powerful case that any college or university that is teaching its STEM courses by traditional lectures is providing an inferior education to its students. One hopes that it will inspire administrators to start paying attention to the teaching methods used in their classrooms … establishing accountability for using active-learning methods.”National societies, committee reports, and accrediting bodies recommend that engineering curricula be designed to prepare future engineers for the complex interdisciplinary nature of the field and for the multitude of skills and perspectives they will need to be successful practitioners. The authors posit that case-based instruction, with its emphasis on honing skills in solving authentic, interdisciplinary, and ill-defined problems, aligns well with these recommendations. However, the methodology is still relatively underutilized, and its effectiveness is underexamined. This article describes a study designed to advance these issues by comparing lecture- and case-based methods within the same offering of a 72-student, upper-level, required course in mechanical engineering.The study used a within-subjects, posttest only, A-B-A-B research design across four key course topics. That is, two lecture-based modules (the A or baseline phases) alternated with case-based modules (the B or treatment phases). Following each module, students responded to open-response quiz questions and a survey about learning and engagement (adapted from the Student Assessment of Learning Gains instrument). The quiz questions assessed ability to apply knowledge to problem solving (so-called “traditional” questions) and ability to explain the concepts that were used (“conceptual” questions). This study design had the advantage that the same students experienced both the baseline and treatment conditions twice. The authors describe in detail the pedagogical approaches used in both sets of the A and B phases.The quizzes were scored by independent raters (with high interrater reliability) on a 0–3 scale; scores were analyzed using appropriate statistical methods. Survey items were analyzed using a principal-components factor analysis; composite scores were generated for a learning confidence factor and an engagement–connections factor. Analyses revealed that the two pedagogical approaches had similar outcomes with respect to the traditional questions, but conceptual understanding scores (indicating better understanding of the concepts that were applied to problem solving) were significantly higher for the case-based modules. Students reported that they appreciated how cases were better than lecture in helping them make connections to real-world concerns and see the relevance of what they were learning, but there were no significant differences in students’ perceptions of their learning gains in the case-based versus the lecture modules. The authors note that many studies have likewise demonstrated that students’ perceptions of their learning gains in more learner-centered courses are often not accurate reflections of the actual learning outcomes.The authors conclude that while these results are promising indications of the effectiveness of case-based instruction in engineering curricula, the studies need to be replicated across a number of semesters and in different engineering disciplines and extended to assess the long-term effect of case-based instruction on students’ ability to remember and apply their knowledge.Although this study was limited to an engineering context, the case-based methodologies and research design seem well-suited for use in action research in other disciplines.Well-documented challenges to conceptual change faced by students of evolution include the necessity of unseating existing naïve theories (such as natural selection having purposiveness), having the ability to view the complex and emergent nature of evolutionary processes through systems-type thinking, and being able to see the connections between evolutionary content learned in the classroom and everyday life events that can facilitate appreciation of its importance and motivate learning. To help students meet these challenges, the authors adapted a pedagogical model called Teaching for Transformative Experiences in Science (TTES) in the course of instruction on six major concepts in evolutionary biology. This article reports on a comparison of the effectiveness of TTES approaches in fostering conceptual change and positive affect with that of instruction enhanced with use of refutational texts (RT). Use of RTs to promote conceptual change, a strategy with documented effectiveness, entails first stating a misconception (the term used by the authors), then explicitly refuting it by elaborating on a scientific explanation. By contrast, the TTES model promotes teaching that fosters transformative learning experiences—teaching in which instructors 1) place the content in a context allows the students to see its utility or experiential value; 2) model their own transformative experiences in learning course concepts; and 3) scaffold a process that allows students to rethink or “resee” a concept from the perspective of their previous, related life experiences.The authors designed the study to address three questions relevant to the comparison of the two approaches: would the TTES group (vs. the RT group) demonstrate or report 1) greater conceptual change, 2) higher levels of transformative experience, and 3) differences in topic emotions (more positive affect) related to learning about evolution? The study used three survey instruments, one that measured the types and depth of students’ transformative experiences (the Transformative Experience Survey, adapted from Pugh et al., 2010 ), another that assessed conceptual knowledge (Evolutionary Reasoning Scale; Shulman, 2006 ), and a third that evaluated the emotional reactions of students to the evolution content they were learning (Evolution Emotions Survey, derived from Broughton et al., 2011 ). In addition to Likert-scale items, the Transformative Experience Survey contained three open-ended response questions; the responses were scored by two independent raters using a coding scheme for degree of out-of-school engagement. The authors provide additional detail about the nuances of what these instruments were designed to measure and their scoring schemes and include the instruments in the appendices. The Evolutionary Reasoning Scale and the Evolution Emotions survey were administered as both pre- and posttests, and the Transformative Experience survey was administered only at the end of the intervention. The treatment (TTES, n = 28) and comparison (RT, n = 27) groups were not significantly different with respect to all measured demographic variables and the number of high school or college-level science courses taken.Briefly, the evolutionary biology learning experience that participants were exposed to was 3 d in duration for both the treatment and comparison groups. On day 1, the instructor (the same person for both groups) gave a PowerPoint lecture on the same six evolutionary concepts, with illustrative examples. For the treatment group only, the instructor drew from his own transformative experiences in connection with the illustrative examples, describing how he used the concepts, what their value was to him, and how each had expanded his understanding and perception of evolution. On days 2 and 3 for the treatment group, the students and instructor engaged in whole-class discussions about their everyday experiences with evolution concepts (and related misconceptions) and their usefulness; the instructor scaffolded various “reseeing” experiences throughout the discussions. For the comparison group, misconceptions and refutations were addressed in the course of the day 1 lecture, and on days 2 and 3, the participants read refutational texts and then took part in discussions of the texts led by the instructor.Survey results and accompanying statistical analyses indicated that both groups exhibited gains (with significant t statistics) in understanding of the evolution concepts as measured by the Evolutionary Reasoning Scale (Shulman, 2006 ). However, the gains were greater for the treatment (TTES) group: effect size, reported as a value for eta-squared, η2, equaled 0.29. The authors point out by way of context for this outcome that use of RTs, along with follow-up discussions that contrast misconceptions with scientific explanations, has been previously shown to be effective in promoting conceptual change; thus, the comparison was with a well-regarded methodology. Additionally, the Transformation Experience survey findings indicated higher levels of transformative experience for the TTES group participants; they more extensively reported that the concepts had everyday value and meaning and expanded their perspectives. The TTES group alone showed pre- to posttest gains in enjoyment while learning about evolution, a positive emotion that may have classroom implications in terms of receptivity to learning about evolution and willingness to continue study in this and related fields.The authors conclude that the TTES model can effectively engage students in transformative experiences in ways that can facilitate conceptual change in content areas in which that change is difficult to achieve. In discussing possible limitations of the study, they note in particular that the predominance of female study participants (71% of the total) argues for its replication with a more diverse sample.I invite readers to suggest current themes or articles of interest in life sciences education, as well as influential papers published in the more distant past or in the broader field of education research, to be featured in Current Insights. Please send any suggestions to Deborah Allen (ude.ledu@nellaed).  相似文献   

19.
This article introduces the author''s emerging new paradigm (“perinatal participation”) that re-imagines postpartum support by helping expectant parents have more peace of mind, confidence, self-compassion, and emotional wellbeing over the course of their perinatal journeys, with special focus on feeling more prepared for all that happens after baby arrives. The author''s work rests on the shoulders of her 1992 book, Mothering the New Mother: Women''s Feelings and Needs After Childbirth. Perceiving a new urgent need to support expectant parents three decades later (the need to alleviate the high stress levels in expectant parents she was talking to) the author explored filtering the expectant and new parent''s experience through what she calls a “peace-of-mind lens.”  相似文献   

20.
A response to Maskiewicz and Lineback''s essay in the September 2013 issue of CBE-Life Sciences Education.Dear Editor:Maskiewicz and Lineback (2013) have written a provocative essay about how the term misconceptions is used in biology education and the learning sciences in general. Their historical perspective highlights the logic and utility of the constructivist theory of learning. They emphasize that students’ preliminary ideas are resources to be built upon, not errors to be eradicated. Furthermore, Maskiewicz and Lineback argue that the term misconception has been largely abandoned by educational researchers, because it is not consistent with constructivist theory. Instead, they conclude, members of the biology education community should speak of preconceptions, naïve conceptions, commonsense conceptions, or alternative conceptions.We respectfully disagree. Our objections encompass both the semantics of the term misconception and the more general issue of constructivist theory and practice. We now address each of these in turn. (For additional discussion, please see Leonard, Andrews, and Kalinowski , “Misconceptions Yesterday, Today, and Tomorrow,” CBE—Life Sciences Education [LSE], in press, 2014.)Is misconception suitable for use in scholarly discussions? The answer depends partly on the intended audience. We avoid using the term misconception with students, because it could be perceived as pejorative. However, connotations of disapproval are less of a concern for the primary audience of LSE and similar journals, that is, learning scientists, discipline-based education researchers, and classroom teachers.An additional consideration is whether misconception is still used in learning sciences outside biology education. Maskiewicz and Lineback claim that misconception is rarely used in journals such as Cognition and Instruction, Journal of the Learning Sciences, Journal of Research in Science Teaching, and Science Education, yet the term appears in about a quarter of the articles published by these journals in 2013 (National Research Council, 2012 ).

Table 1.

Use of the term misconception in selected education research journals in 2013
Journal (total articles published in 2013a)Articles using misconception (“nondisapproving” articles/total articles)Articles using other terms
LSE (59)23/24Alternative conception (4)
Commonsense conception (2)
Naïve conception (1)
Preconception (4)
Cognition and Instruction (16)3/3None
Journal of the Learning Sciences (17)4/4Commonsense science knowledge (1)
Naïve conception (1)
Prior conception (1)
Journal of Research in Science Teaching (49)11/13Commonsense idea (1)
Naïve conception (1)
Preconception (5)
Science Education (36)10/11Naïve conception (1)
Open in a separate windowaAs of November 25, 2013. Does not include very short editorials, commentaries, corrections, or prepublication online versions.A final consideration is whether any of the possible alternatives to misconception are preferable. We feel that the alternatives suggested by Maskiewicz and Lineback are problematic in their own ways. For example, naïve conception sounds more strongly pejorative to us than misconception. Naïve conception and preconception also imply that conceptual challenges occur only at the very beginning stages of learning, even though multiple rounds of conceptual revisions are sometimes necessary (e.g., see figure 1 of Andrews et al., 2012 ) as students move through learning progressions. Moreover, the terms preferred by Maskiewicz and Lineback are used infrequently (Smith et al. (1993) that they object to statements that misconceptions should be actively confronted, challenged, overcome, corrected, and/or replaced (Smith et al. (1993) argue on theoretical grounds that confrontation does not allow refinement of students’ pre-existing, imperfect ideas; instead, the students must simply choose among discrete prepackaged ideas. From Maskiewicz and Lineback''s perspective, the papers listed in Maskiewicz and Lineback (2013) as using outdated views of misconceptionsa
ArticleExample of constructivist languageExample of language suggesting confrontation
Andrews et al., 2011 “Constructivist theory argues that individuals construct new understanding based on what they already know and believe.… We can expect students to retain serious misconceptions if instruction is not specifically designed to elicit and address the prior knowledge students bring to class” (p. 400).Instructors were scored for “explaining to students why misconceptions were incorrect” and “making a substantial effort toward correcting misconceptions” (p. 399). “Misconceptions must be confronted before students can learn natural selection” (p. 399). “Instructors need to elicit misconceptions, create situations that challenge misconceptions.” (p. 403).
Baumler et al., 2012 “The last pair [of students]''s response invoked introns, an informative answer, in that it revealed a misconception grounded in a basic understanding of the Central Dogma” (p. 89; acknowledges students’ useful prior knowledge).No relevant text found
Cox-Paulson et al., 2012 No relevant text foundThis paper barely mentions misconceptions, but cites sources (Phillips et al., 2008 ; Robertson and Phillips, 2008 ) that refer to “exposing,” “uncovering,” and “correcting” misconceptions.
Crowther, 2012 “Prewritten songs may explain concepts in new ways that clash with students’ mental models and force revision of those models” (p. 28; emphasis added).“Songs can be particularly useful for countering … conceptual misunderstandings.… Prewritten songs may explain concepts in new ways that clash with students’ mental models and force revision of those models” (p. 28).
Kalinowski et al., 2010 “Several different instructional approaches for helping students to change misconceptions … agree that instructors must take students’ prior knowledge into account and help students integrate new knowledge with their existing knowledge” (p. 88).“One strategy for correcting misconceptions is to challenge them directly by ‘creating cognitive conflict,’ presenting students with new ideas that conflict with their pre-existing ideas about a phenomenon… In addition, study of multiple examples increases the chance of students identifying and overcoming persistent misconceptions” (p. 89).
Open in a separate windowaWhile these papers do not adhere to Smith et al.''s (1993) version of constructivism, they do adhere to the constructivist approach that advocates cognitive dissonance.Our own stance differs from that of Maskiewicz and Lineback, reflecting a lack of consensus within constructivist theory. We agree with those who argue that, not only are confrontations compatible with constructivist learning, they are a central part of it (e.g., Gilbert and Watts, 1983 ; Hammer, 1996 ). We note that Baviskar et al. (2009) list “creating cognitive dissonance” as one of the four main tenets of constructivist teaching. Their work is consistent with research showing that focusing students on conflicting ideas improves understanding more than approaches that do not highlight conflicts (e.g., Kowalski and Taylor, 2009 ; Gadgil et al., 2012 ). Similarly, the Discipline-Based Education Research report (National Research Council, 2012 , p. 70) advocates “bridging analogies,” a form of confrontation, to guide students toward more accurate ways of thinking. Therefore, we do not share Maskiewicz and Lineback''s concerns about the papers listed in Price, 2012 ). We embrace collegial disagreement.Maskiewicz and Lineback imply that labeling students’ ideas as misconceptions essentially classifies these ideas as either right or wrong, with no intermediate stages for constructivist refinement. In fact, a primary goal of creating concept inventories, which use the term misconception profusely (e.g., Morris et al., 2012 ; Prince et al., 2012 ), is to demonstrate that learning is a complex composite of scientifically valid and invalid ideas (e.g., Andrews et al., 2012 ). A researcher or instructor who uses the word misconceptions can agree wholeheartedly with Maskiewicz and Lineback''s point that misconceptions can be a good starting point from which to develop expertise.As we have seen, misconception is itself fraught with misconceptions. The term now embodies the evolution of our understanding of how people learn. We support the continued use of the term, agreeing with Maskiewicz and Lineback that authors should define it carefully. For example, in our own work, we define misconceptions as inaccurate ideas that can predate or emerge from instruction (e.g., Andrews et al., 2012 ). We encourage instructors to view misconceptions as opportunities for cognitive dissonance that students encounter as they progress in their learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号