首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As cesarean rates have climbed to almost one-third of all births in the United States, current research and professional organizations have identified letting labor begin on its own as one of the most important strategies for reducing the primary cesarean rate. At least equally important, letting labor begin on its own supports normal physiology, prevents iatrogenic prematurity, and prevents the cascade of interventions caused by labor induction. This article is an updated evidence-based review of the “Lamaze International Care Practices That Promote Normal Birth, Care Practice #1: Let Labor Begin on Its Own,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

2.
In the United States, obstetric care is intervention intensive, resulting in 1 in 3 women undergoing cesarean surgery wherein mobility is treated as an intervention rather than supporting the natural physiologic process for optimal birth. Women who use upright positions and are mobile during labor have shorter labors, receive less intervention, report less severe pain, and describe more satisfaction with their childbirth experience than women in recumbent positions. This article is an updated evidence-based review of the “Lamaze International Care Practices That Promote Normal Birth, Care Practice #2: Freedom of Movement Throughout Labor,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

3.
All women should be allowed and encouraged to bring a loved one, friend, or doula to their birth without financial or cultural barriers. Continuous labor support offers benefits to mothers and their babies with no known harm. This article is an updated evidence-based review of the “Lamaze International Care Practices that Promote Normal Birth, Care Practice #3: Continuous Labor Support,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

4.
In this column, the author reprises recent selections from the Lamaze International research blog, Science & Sensibility. Each selection discusses a new study that demonstrates the “First, do no harm” principle in a different way. New research on the potentially harmful effects of intravenous lines demonstrates that refraining from routine interventions in labor protects the safety of women and babies. A new systematic review of movement and position changes in labor shows that eliminating unfounded restrictions also protects maternal and infant health and well-being. Finally, a study of patterns of use of neonatal intensive care units reveals how the organization of the maternity care system itself can affect the health outcomes of its beneficiaries.  相似文献   

5.
Women in the United States are still giving birth in the supine position and are restricted in how long they can push and encouraged to push forcefully by their caregivers. Research does not support these activities. There is discussion about current research and suggestions on how to improve the quality of the birth experience. This article is an updated evidence-based review of the “Lamaze International Care Practices That Promote Normal Birth, Care Practice #5: Spontaneous Pushing in Upright or Gravity-Neutral Positions,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

6.
In January 2010, Women’s Health Issues published two direction-setting reports from the Transforming Maternity Care (TMC) Project: “2020 Vision for a High-Quality, High-Value Maternity Care System” and “Blueprint for Action: Steps Toward a High-Quality, High-Value Maternity Care System.” This guest editorial summarizes highlights of the implementation phase of what is now known as the TMC Partnership. Major progress has been made in elevating maternity care quality to a national policy priority, increasing the availability and use of maternity care performance measures, and developing shared decision making tools for childbearing women.  相似文献   

7.
Many behaviors and substances have been purported to induce labor. Using data from the Third Pregnancy, Infection, and Nutrition cohort, we focus on 663 women who experienced spontaneous labor. Of the women who reported a specific labor trigger, 32% reported physical activity (usually walking), 24% a clinician-mediated trigger, 19% a natural phenomenon, 14% some other physical trigger (including sexual activity), 12% reported ingesting something, 12% an emotional trigger, and 7% maternal illness. With the exceptions of walking and sexual intercourse, few women reported any one specific trigger, although various foods/substances were listed in the “ingesting something” category. Discussion of potential risks associated with “old wives’ tale” ways to induce labor may be warranted as women approach term.  相似文献   

8.
Mothers and babies have a physiologic need to be together at the moment of birth and during the hours and days that follow. Keeping mothers and babies together is a safe and healthy birth practice. Evidence supports immediate, uninterrupted skin-to-skin care after vaginal birth and during and after cesarean surgery for all stable mothers and babies, regardless of feeding preference. Unlimited opportunities for skin-to-skin care and breastfeeding promote optimal maternal and child outcomes. This article is an updated evidence-based review of the “Lamaze International Care Practices That Promote Normal Birth, Care Practice #6: No Separation of Mother and Baby, With Unlimited Opportunities for Breastfeeding,” published in The Journal of Perinatal Education, 16(3), 2007.  相似文献   

9.
A standard genetic/bioinformatic activity in the genomics era is the identification within DNA sequences of an "open reading frame" (ORF) that encodes a polypeptide sequence. As an educational introduction to such a search, we provide a webapp that composes, displays for solution, and then solves short DNA exemplars with a single ORFTo the Editor: We wish to bring a new Web resource to the attention of CBE—Life Sciences Education readers.When being introduced to the central dogma of nucleic acid transactions, students are often required to identify the 5′→3′ DNA template strand in a double-stranded DNA (dsDNA) molecule; transcribe an antiparallel, complementary 5′→3′ mRNA; and then translate the mRNA codons 5′→3′ into an amino acid polypeptide by means of the genetic code table. Although this algorithm replicates the molecular genetic process of protein synthesis, experience shows that the series of left/right, antiparallel, and/or 5′→3′ reversals is confusing to many students when worked by hand. Students may also obtain the “right” answer for the “wrong” reasons, as when the “wrong” DNA strand is transcribed in the “wrong” 3′→5′ direction, so as to produce a string of letters that “translates correctly.”In genetics and bioinformatics education, we have found it more intuitively appealing to demonstrate and emphasize the equivalence of the mRNA to the DNA sense strand complement of the template strand. The sense strand is oriented in the same 5′→3′ direction and has a sequence identical to the mRNA, except for substitution of thymidine in the DNA for uracil in the mRNA. It is thus more computationally efficient to “read” the polypeptide sequence directly from this strand, with mental substitution of thymidine in the triplets of the genetic code table. (By definition, “codons” occur only in mRNA: the equivalent three-letter words in the DNA sense strand may be designated “triplets.”) This is the same logic used in DNA “translation” software programs.A further constraint often imposed on dsDNA teaching exemplars is that five of the six possible reading frames are “closed” by the occurrence of one or more “stop” triplets, and only one is an open reading frame (ORF) that encodes an uninterrupted polypeptide. We designate this the “5&1” condition. The task for the student is to identify the ORF and “translate” it correctly. Other considerations include correct labeling of the sense and template DNA strands, their 5′ and 3′ ends (and of the mRNA as required), and the amino (N) and carboxyl (C) termini of the polypeptide.Thus, instructors face the logistical challenge of creating dsDNA sequences that satisfy the “5&1” condition for homework and exam questions. Instructors must compose sequences with one or more “stops” in the three overlapping read frames of one strand, while simultaneously creating two “stopped” frames and one ORF in the other. We have explored these constraints as an algorithmic and computational challenge (Carr et al., 2014 ). There are no “5&1” exemplars of length L ≤ 10, and the proportion of exemplars of length L ≥ 11 is very small relative to the 4L possible sequences (e.g., 0.0023% for L = 11, 0.048% for L = 15, 0.89% for L = 25). This makes random exploration for such exemplars inefficient.We therefore developed a two-stage recursive search algorithm that samples 4L space randomly to generate “5&1” exemplars of any specified length L from 11 ≤ L ≤ 100. The algorithm has been implemented as a Web application (“RandomORF,” available at www.ucs.mun.ca/~donald/orf/randomorf). Figure 1 shows a screen capture of the successive stages of the presentation. The application requires JavaScript on the computer used to run the Web browser.Open in a separate windowFigure 1.Successive screen captures of the webapp RandomORF. First panel: the Length parameter is the desired number of base pairs. Second panel: Clicking the “Generate dsDNA” button shows the dsDNA sequence to be solved, with labeled 5′ and 3′ ends. The button changes to “Show ORF.” Third panel: A second click shows the six reading frames, with the ORF highlighted. Here, the ORF is in the sixth reading frame on the bottom (sense) strand. The polypeptide sequence, read right to left, is N–EITHLRL–C, where N and C are the amino and carboxyl termini, respectively. The conventional IUPAC single-letter abbreviations for amino acids are centered over the middle base of the triplet; stop triplets are indicated by asterisks (*).The webapp provides a means for students to practice identifying ORFs by efficiently generating many examples with unique solutions (Supplemental Material); this can take the place of the more standard offering of a small number of set examples with an answer key. The two-stage display makes it possible for problems to be worked “cold,” with the correct ORF identified only afterward. For examinations, any exemplar may be presented in any of four ways, by transposing the top and bottom strands and/or reversing the direction of the strands left to right. Presentation of the 5′ end of the sense strand at the lower left or upper or lower right tests student recognition that sense strands are always read in the 5′→3′ direction, irrespective of the “natural” left-to-right and/or top-then-bottom order. We intend to modify the webapp to include other features of pedagogical value, including constraints on [G+C] composition and the type, number, and distribution of stop triplets. We welcome suggestions from readers.  相似文献   

10.
11.
The scale and importance of Vision and Change in Undergraduate Biology Education: A Call to Action challenges us to ask fundamental questions about widespread transformation of college biology instruction. I propose that we have clarified the “vision” but lack research-based models and evidence needed to guide the “change.” To support this claim, I focus on several key topics, including evidence about effective use of active-teaching pedagogy by typical faculty and whether certain programs improve students’ understanding of the Vision and Change core concepts. Program evaluation is especially problematic. While current education research and theory should inform evaluation, several prominent biology faculty–development programs continue to rely on self-reporting by faculty and students. Science, technology, engineering, and mathematics (STEM) faculty-development overviews can guide program design. Such studies highlight viewing faculty members as collaborators, embedding rewards faculty value, and characteristics of effective faculty-development learning communities. A recent National Research Council report on discipline-based STEM education research emphasizes the need for long-term faculty development and deep conceptual change in teaching and learning as the basis for genuine transformation of college instruction. Despite the progress evident in Vision and Change, forward momentum will likely be limited, because we lack evidence-based, reliable models for actually realizing the desired “change.”
All members of the biology academic community should be committed to creating, using, assessing, and disseminating effective practices in teaching and learning and in building a true community of scholars. (American Association for the Advancement of Science [AAAS], 2011 , p. 49)
Realizing the “vision” in Vision and Change in Undergraduate Biology Education (Vision and Change; AAAS, 2011 ) is an enormous undertaking for the biology education community, and the scale and critical importance of this challenge prompts us to ask fundamental questions about widespread transformation of college biology teaching and learning. For example, Vision and Change reflects the consensus that active teaching enhances the learning of biology. However, what is known about widespread application of effective active-teaching pedagogy and how it may differ across institutional and classroom settings or with the depth of pedagogical understanding a biology faculty member may have? More broadly, what is the research base concerning higher education biology faculty–development programs, especially designs that lead to real change in classroom teaching? Has the develop-and-disseminate approach favored by the National Science Foundation''s (NSF) Division of Undergraduate Education (Dancy and Henderson, 2007 ) been generally effective? Can we directly apply outcomes from faculty-development programs in other science, technology, engineering, and mathematics (STEM) disciplines or is teaching college biology unique in important ways? In other words, if we intend to use Vision and Change as the basis for widespread transformation of biology instruction, is there a good deal of scholarly literature about how to help faculty make the endorsed changes or is this research base lacking?In the context of Vision and Change, in this essay I focus on a few key topics relevant to broad-scale faculty development, highlighting the extent and quality of the research base for it. My intention is to reveal numerous issues that may well inhibit forward momentum toward real transformation of college-level biology teaching and learning. Some are quite fundamental, such as ongoing dependence on less reliable assessment approaches for professional-development programs and mixed success of active-learning pedagogy by broad populations of biology faculty. I also offer specific suggestions to improve and build on identified issues.At the center of my inquiry is the faculty member. Following the definition used by the Professional and Organizational Development Network in Higher Education (www.podnetwork.org), I use “faculty development” to indicate programs that emphasize the individual faculty member as teacher (e.g., his or her skill in the classroom), scholar/professional (publishing, college/university service), and person (time constraints, self-confidence). Of course, faculty members work within particular departments and institutions, and these environments are clearly critical as well (Stark et al., 2002 ). Consequently, in addition to focusing on the individual, faculty-development programs may also consider organizational structure (such as administrators and criteria for reappointment and tenure) and instructional development (the overall curriculum, who teaches particular courses). In fact, Diamond (2002) emphasizes that the three areas of effort (individual, organizational, instructional) should complement one another in faculty-development programs. The scope of the numerous factors impacting higher education biology instruction is a realistic reminder about the complexity and challenge of the second half of the Vision and Change endeavor.This essay is organized around specific topics meant to be representative and to illustrate the state of the art of widespread (beyond a limited number of courses and institutions) professional development for biology faculty. The first two sections focus on active teaching and biology students’ conceptual understanding, respectively. The third section concerns important elements that have been identified as critical for effective STEM faculty-development programs.  相似文献   

12.
13.
Successful learning outcomes require the integration of content and meaningful assessment with effective pedagogy. However, development of coherent and cohesive curriculum is seemingly overwhelming even to experienced teachers. Obviously this creates a barrier to successful student learning. Understanding by Design (UbD) overcomes this impasse by providing concise and practical guidance for experienced and inexperienced teachers. In programs sponsored by the National Science Foundation and the National Institutes of Health, teams composed of University of Wyoming graduate students and science teachers from grades 6 to 9 designed motivating, inquiry-based lesson plans intended to get students to think and act like scientists. In this process, teams utilized principles outlined in UbD with great success. UbD describes a practical and useful “backward” design process in which anticipated results are first identified; acceptable evidence for learning outcomes is established and, only then, are specific learning experiences and instruction planned. Additionally, UbD provides procedures to avoid content overload by focusing on “enduring principles.” WHERE, the UbD sieve for activities, was used effectively to develop tasks that are engaging, that are consistent with state educational standards, and that promote self-directed, life-long learning.  相似文献   

14.
根据马克思的劳动价值论,如果劳动量为零时产量为零,产量随劳动量的增加而先递增上升然后递减上升,且随劳动生产力的提高而上升,则单位商品的价值量就随劳动量的增加先减少然后增加,并随劳动生产力的提高而减少。近年来出现的关于单位商品价值量与劳动生产力成正比的理论的主要错误是混淆了决定价值量的、抽象的社会必要劳动与决定使用价值量的、具体的有效劳动,以及混淆了劳动量的变化与劳动生产力的变化。  相似文献   

15.
At the close of the Society for the Advancement of Biology Education Research conference in July 2012, one of the organizers made the comment: “Misconceptions are so yesterday.” Within the community of learning sciences, misconceptions are yesterday''s news, because the term has been aligned with eradication and/or replacement of conceptions, and our knowledge about how people learn has progressed past this idea. This essay provides an overview of the discussion within the learning sciences community surrounding the term “misconceptions” and how the education community''s thinking has evolved with respect to students’ conceptions. Using examples of students’ incorrect ideas about evolution and ecology, we show that students’ naïve ideas can provide the resources from which to build scientific understanding. We conclude by advocating that biology education researchers use one or more appropriate alternatives in place of the term misconception whenever possible.  相似文献   

16.
In this column, the authors summarize four research studies relevant to normal birth. Topics of the studies summarized include the harms of screening for macrosomia late in pregnancy, the risk factors for and impact of postpartum pain in childbearing women, the effects of a breastfeeding approach called “biological nurturing” on reflexive behavior in newborns, and the effects of prenatal yoga on labor and birth outcomes.  相似文献   

17.
The objective of this study was to examine the associations between attendance at childbirth education classes and maternal characteristics (age, income, educational level, single parent status), maternal psychological states (fear of birth, anxiety), rates of obstetric interventions, and breastfeeding initiation. Between women’s 35th and 39th weeks of gestation, we collected survey data about their childbirth fear, anxiety, attendance at childbirth education classes, choice of health-care provider, and expectations for interventions; we then linked women’s responses (n = 624) to their intrapartum records obtained through Perinatal Services British Columbia. Older, more educated, and nulliparous women were more likely to attend childbirth education classes than younger, less educated, and multiparous women. Attending prenatal education classes was associated with higher rates of vaginal births among women in the study sample. Rates of labor induction and augmentation and use of epidural anesthesia were not significantly associated with attendance at childbirth education classes. Future studies might explore the effect of specialized education programs on rates of interventions during labor and mode of birth.  相似文献   

18.
A response to Maskiewicz and Lineback''s essay in the September 2013 issue of CBE-Life Sciences Education.Dear Editor:Maskiewicz and Lineback (2013) have written a provocative essay about how the term misconceptions is used in biology education and the learning sciences in general. Their historical perspective highlights the logic and utility of the constructivist theory of learning. They emphasize that students’ preliminary ideas are resources to be built upon, not errors to be eradicated. Furthermore, Maskiewicz and Lineback argue that the term misconception has been largely abandoned by educational researchers, because it is not consistent with constructivist theory. Instead, they conclude, members of the biology education community should speak of preconceptions, naïve conceptions, commonsense conceptions, or alternative conceptions.We respectfully disagree. Our objections encompass both the semantics of the term misconception and the more general issue of constructivist theory and practice. We now address each of these in turn. (For additional discussion, please see Leonard, Andrews, and Kalinowski , “Misconceptions Yesterday, Today, and Tomorrow,” CBE—Life Sciences Education [LSE], in press, 2014.)Is misconception suitable for use in scholarly discussions? The answer depends partly on the intended audience. We avoid using the term misconception with students, because it could be perceived as pejorative. However, connotations of disapproval are less of a concern for the primary audience of LSE and similar journals, that is, learning scientists, discipline-based education researchers, and classroom teachers.An additional consideration is whether misconception is still used in learning sciences outside biology education. Maskiewicz and Lineback claim that misconception is rarely used in journals such as Cognition and Instruction, Journal of the Learning Sciences, Journal of Research in Science Teaching, and Science Education, yet the term appears in about a quarter of the articles published by these journals in 2013 (National Research Council, 2012 ).

Table 1.

Use of the term misconception in selected education research journals in 2013
Journal (total articles published in 2013a)Articles using misconception (“nondisapproving” articles/total articles)Articles using other terms
LSE (59)23/24Alternative conception (4)
Commonsense conception (2)
Naïve conception (1)
Preconception (4)
Cognition and Instruction (16)3/3None
Journal of the Learning Sciences (17)4/4Commonsense science knowledge (1)
Naïve conception (1)
Prior conception (1)
Journal of Research in Science Teaching (49)11/13Commonsense idea (1)
Naïve conception (1)
Preconception (5)
Science Education (36)10/11Naïve conception (1)
Open in a separate windowaAs of November 25, 2013. Does not include very short editorials, commentaries, corrections, or prepublication online versions.A final consideration is whether any of the possible alternatives to misconception are preferable. We feel that the alternatives suggested by Maskiewicz and Lineback are problematic in their own ways. For example, naïve conception sounds more strongly pejorative to us than misconception. Naïve conception and preconception also imply that conceptual challenges occur only at the very beginning stages of learning, even though multiple rounds of conceptual revisions are sometimes necessary (e.g., see figure 1 of Andrews et al., 2012 ) as students move through learning progressions. Moreover, the terms preferred by Maskiewicz and Lineback are used infrequently (Smith et al. (1993) that they object to statements that misconceptions should be actively confronted, challenged, overcome, corrected, and/or replaced (Smith et al. (1993) argue on theoretical grounds that confrontation does not allow refinement of students’ pre-existing, imperfect ideas; instead, the students must simply choose among discrete prepackaged ideas. From Maskiewicz and Lineback''s perspective, the papers listed in Maskiewicz and Lineback (2013) as using outdated views of misconceptionsa
ArticleExample of constructivist languageExample of language suggesting confrontation
Andrews et al., 2011 “Constructivist theory argues that individuals construct new understanding based on what they already know and believe.… We can expect students to retain serious misconceptions if instruction is not specifically designed to elicit and address the prior knowledge students bring to class” (p. 400).Instructors were scored for “explaining to students why misconceptions were incorrect” and “making a substantial effort toward correcting misconceptions” (p. 399). “Misconceptions must be confronted before students can learn natural selection” (p. 399). “Instructors need to elicit misconceptions, create situations that challenge misconceptions.” (p. 403).
Baumler et al., 2012 “The last pair [of students]''s response invoked introns, an informative answer, in that it revealed a misconception grounded in a basic understanding of the Central Dogma” (p. 89; acknowledges students’ useful prior knowledge).No relevant text found
Cox-Paulson et al., 2012 No relevant text foundThis paper barely mentions misconceptions, but cites sources (Phillips et al., 2008 ; Robertson and Phillips, 2008 ) that refer to “exposing,” “uncovering,” and “correcting” misconceptions.
Crowther, 2012 “Prewritten songs may explain concepts in new ways that clash with students’ mental models and force revision of those models” (p. 28; emphasis added).“Songs can be particularly useful for countering … conceptual misunderstandings.… Prewritten songs may explain concepts in new ways that clash with students’ mental models and force revision of those models” (p. 28).
Kalinowski et al., 2010 “Several different instructional approaches for helping students to change misconceptions … agree that instructors must take students’ prior knowledge into account and help students integrate new knowledge with their existing knowledge” (p. 88).“One strategy for correcting misconceptions is to challenge them directly by ‘creating cognitive conflict,’ presenting students with new ideas that conflict with their pre-existing ideas about a phenomenon… In addition, study of multiple examples increases the chance of students identifying and overcoming persistent misconceptions” (p. 89).
Open in a separate windowaWhile these papers do not adhere to Smith et al.''s (1993) version of constructivism, they do adhere to the constructivist approach that advocates cognitive dissonance.Our own stance differs from that of Maskiewicz and Lineback, reflecting a lack of consensus within constructivist theory. We agree with those who argue that, not only are confrontations compatible with constructivist learning, they are a central part of it (e.g., Gilbert and Watts, 1983 ; Hammer, 1996 ). We note that Baviskar et al. (2009) list “creating cognitive dissonance” as one of the four main tenets of constructivist teaching. Their work is consistent with research showing that focusing students on conflicting ideas improves understanding more than approaches that do not highlight conflicts (e.g., Kowalski and Taylor, 2009 ; Gadgil et al., 2012 ). Similarly, the Discipline-Based Education Research report (National Research Council, 2012 , p. 70) advocates “bridging analogies,” a form of confrontation, to guide students toward more accurate ways of thinking. Therefore, we do not share Maskiewicz and Lineback''s concerns about the papers listed in Price, 2012 ). We embrace collegial disagreement.Maskiewicz and Lineback imply that labeling students’ ideas as misconceptions essentially classifies these ideas as either right or wrong, with no intermediate stages for constructivist refinement. In fact, a primary goal of creating concept inventories, which use the term misconception profusely (e.g., Morris et al., 2012 ; Prince et al., 2012 ), is to demonstrate that learning is a complex composite of scientifically valid and invalid ideas (e.g., Andrews et al., 2012 ). A researcher or instructor who uses the word misconceptions can agree wholeheartedly with Maskiewicz and Lineback''s point that misconceptions can be a good starting point from which to develop expertise.As we have seen, misconception is itself fraught with misconceptions. The term now embodies the evolution of our understanding of how people learn. We support the continued use of the term, agreeing with Maskiewicz and Lineback that authors should define it carefully. For example, in our own work, we define misconceptions as inaccurate ideas that can predate or emerge from instruction (e.g., Andrews et al., 2012 ). We encourage instructors to view misconceptions as opportunities for cognitive dissonance that students encounter as they progress in their learning.  相似文献   

19.
20.
We have developed experiments and materials to model human genetics using rapid cycling Brassica rapa, also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, B. rapa can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented here is a paternity exclusion project in which a child is born with a known mother but two possible alleged fathers. Students use DNA markers (microsatellites) to perform paternity exclusion on these subjects. Realistic DNA marker analysis can be challenging to implement within the limitations of an instructional lab, but we have optimized the experimental methods to work in a teaching lab environment and to maximize the “hands-on” experience for the students. The genetic individuality of each B. rapa plant, revealed by analysis of polymorphic microsatellite markers, means that each time students perform this project, they obtain unique results that foster independent thinking in the process of data interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号