首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
本文先给出含双圆半径的几何性质: 定理1:设△ABC的外接圆半径为R,内切圆半径为r,顶点A、B、C到内心的距离分别为a0,b0,c0,则4Rr2=a0b0c0. 证明:因为r=(a0sin)A/2.=(b0sin)B/2=(c0sin)C/2. 所以r3=(a0b0c0sin)A/2(sin)B/2(sin)C/2因为△=1r/2(a+b+c)=Rr(sinA+sinB+sinC)=2R2sinAsinBsinC所以r/2R=sinA·sinB·sinC/sin+sinB+sinC又因为易证sinA+sinB+sinC=  相似文献   

2.
本文利用余弦定理证明:△ABC的布洛卡点P的一个性质cotθ=cotA+cotB+cotC,且当θ分别等于A/2,B/2,C/2时△ABC的三边a,b,c成等比关系.  相似文献   

3.
文[1]提出并证明了三角重心的一个向量性质. 命题,已知a、b、c、分别为△ABC中解A、B、C的对边,G为△ABC重心,且a·GA+b·GB+c·GC=0,则△ABC为正三角形.  相似文献   

4.
文[1]建立了如下关于三角形中线长的一个有趣的不等式:若ma,mb,mc分别是△ABC的三条中线长,R、r为△ABC外接圆和内切圆半径,则有22222ma mb mc rbc+ca+ab≥+R.研究发现并获得如下加强形式及其对偶不等式.1加强定理1若ma,mb,mc分别是△ABC的三条中线长,则有22294ma mb mcbc+ca+ab≥.(1)为证定理1,先引入以下引理:引理1设a,b,c>0,则有(b+c?a)(c+a?b)(a+b?c)≤abc.(2)(1983年瑞士数学竞赛试题)引理2设a,b,c为三角形的三边长,则有(3a?b?c)(3b?c?a)(3c?a?b)≤(b+c?a)(c+a?b)(a+b?c)(3)与a3+b3+c3+9abc≤2(a2b+b2c+c2a)+2(ab2+bc2+ca2).(4)简…  相似文献   

5.
I为△ABC的内心,本文对AI,BI,CI这三个量,从它们的和,倒数和,乘积,平方和以及开平方倒数和等几个方面进行研究,得到了以下几个结论,其中每个命题中的等号都是当且仅当△ABC为正三角形时取得,不赘述.为了行文方便,记△ABC中三个内角分别为A,B,C,其对边分别是a,b,c,△ABC的外接圆和内切圆的半径分别是R,r,面积和半周长分别为△,p=a+b+c/2.先给出一个 引理 [1]中第60页的5.18给出结论:ab+ bc+ ca≤4(R+r)2≤9R2.  相似文献   

6.
李潜 《中等数学》2011,(7):40-46
第一试一、填空题(每小题8分,共64分)1.已知正实数a、b、c满足(1+a)(1+b)(1+c)=8.则abc+9/abc的最小值是____.2.设O是锐角△ABC所在平面内一点(在△ABC外),CD⊥AB于点D.若→OA=a,→OB =b,→OC=c,则→OD=____(用a、b、c表示).3.函数f(x)=│sinx+1/2sin 2x|(x∈R)的值域是____.  相似文献   

7.
文[1]、[2]、[3]等给出了外角平分线构成的三角形几个有趣的性质,本文得到定理如图,△DEF是△ABC三条外角平分线构成的三角形,设BC=a,CA=b,AB=c,2s=a+b+c,I为△ABC的内心,且DI=x,EI=y,FI=z,△ABC的外接圆和内切圆半径分别为R、r,则4sin2sin2sin2x A=y B=z C=R(1)首先给出一个引理.引理设I为△ABC的内心,则AD、BE、CF交于I点,且I为△DEF的垂心.略证∵?DEF是△ABC三条外角平分线构成的三角形,∴D、E、F为△ABC的旁心[4],显然AD、BE、CF为∠A、∠B、∠C的平分线,则它们交于I点;又∵2∠D AC=A,222∠E AC=B+C=π?…  相似文献   

8.
设a,b,c是△ABC的三边边长,则有如下 Klamkin不等式:a/b+b/c+c/a≥1/3(a+b+c)(1/a+1/b+1/c) (1)文[1]给出了Klamkin不等式的如下逆向形  相似文献   

9.
1981年,高灵得到不等式(1):a′(-a+b+c)+b′(a-b+c)+c′(a+b-c)≥4(3ΔΔ)~(1/2).本文给出一个加强.定理 a,b,c,a′,b′,c′与Δ,Δ′分别表示两个三角形 ABC 和 A′B′C′的边和而积,则a′(-a+b+c)+b′(a-b+c)+c′(a+b-c)≥4(3ΔΔ)~(1/2)+2((ab′)~(1/2)-(a′b)~(1/2))~2等式当且仅当ΔABC 与ΔA′B′C′均为正三角形时成立.应用如下两条引理立得:引理1(2)符号如定理,则  相似文献   

10.
每期一题     
题已知a、b、c是△ABC三边,求证: 8/27≥(b+c)(c+a)(a+b)/(a+b+c)~3 >1/4①这是一个著名的几何问题的等价命题。如图所设,a、b、c为△ABC顶点A、B、C的对边,I为内心,延长AI、BI、CI分别交对边于A′、B′、C′。在△ABA′与△ACA′中利用角平分线  相似文献   

11.
文(1)给出了如下命题1. 命题1 已知a、b、c分别为△ABC中∠A、∠B、∠C的对边,G是△ABC的重心,a·GA+b·GB+c·GC=0,则△ABC为正三角形.  相似文献   

12.
V.Ocordon曾给出了三角形的高与边长之间的不等式[1]:∑a2/h2b+h2c≥2 ① (关于△ABC三边及其边上的高的循环不等式,a、b、c为△ABC的三边,ha、hb、hc为对应边上的高,R、r分别为△ABC外接圆半径和内切圆半径)  相似文献   

13.
文[1]给出了三角形的一组有趣性质,即: 定理在△ABC中,设角A,B,C所对的边分别为a,b,c,若a c=kb(k>1),则  相似文献   

14.
在△ABC和△A′B′C′中,有如下的不等式1/aa′+1/bb′+1/cc′≥1/RR′   (1)其中a、b、c、R,a′、b′、c′、R′分别为△ABC和△A′B′C′的三边和外接圆半径,等号成立当且仅当a=b=c且a′=b′=c′。本文将其推广到双圆四边形(即既有外接圆又有内切圆的四边形),并给出几个猜想。定理 设双圆四边形ABCD、A′B′C′D′的边分别为a、b、c、d,a′、b′、c′、d′。它们的外接圆半径为分别为R、R′,则1/aa′+1/bb′+1/cc′+1/dd′≥2/RR′   (2)等号成立当且仅当a=b=c=d且a′=b′=c′=d′证明:首先我们有a2+b2+c2+d2≤8R2  …  相似文献   

15.
九年级数学练习题中有一道题为:如图,△ABC中,∠C=90.,AB=c,A C=b,BC=a,求其内切圆⊙O的半径r. 解法一:根据三角形面积求连结AO、BO、CO. ∵SΔAOC=1/2AC·r SΔBOC=1/2 BC·r S△AOB=1/2AB·r ∴SΔABC=1/2AC·r+1/2BC·r+1/2AB·r=1/2r(a+b+c) 又S△ABC=1/2BC·AC=1/2ab ∴1/2r( a+b+c)=1/2ab ∴r=ab/a+b+c 解法二:利用切线长性质求 作OD⊥AC,OE⊥BC,OF⊥AB,则四边形DCEO为正方形.  相似文献   

16.
设△ABC的三边长、外接圆半径、内切圆半径、半周长与面积分别为a,b,c,R,r,s,Δ,∑表示循环求和.引理1在△ABC中,有Δ=abc/4R=sr=s(s-a)(s-b)(s-c);∑ab=s2+4Rr+r2;sin A/2=(s-b)(s-c)/bc.  相似文献   

17.
一、判断三角形的形状例1已知a、b、c分别是△ABC的三条边,且a~2+ac=b~2+bc,试判断△ABC的形状.解析:由a~2+ac=b~2+bc.得a~2- b~2+ac-bc=0.将此式的左边分解因式,得(a-b)(a+b+c)=0.因为a、b、c是△ABC的三条边.所以a+b+b>0.故a-b=0.从而a=b,于是△ABC是等腰三角形.  相似文献   

18.
Weitzenberk不等式:在△ABC中,设BC=a,CA=b,AB=c,△表示△ABC的面积.则 a2+b2+c2≥43△. (1) 不等式(1)有许多种加强,本文将给出不等式(1)的一种半对称形式加强.  相似文献   

19.
题目(第三届北方数学奥林匹克邀请赛)设△ABC的三边长分别为a、b、c,且a+b+c=3,求f(a,b,c)=a~2+b~2+c~2+4/3abc的最小值.文[2]给出三种均值不等式解法,经研究,笔者再给出一种恒等变形解法,顺便得到f(a,b,c)的上确界.  相似文献   

20.
关于三角形中线的一个不等式   总被引:1,自引:0,他引:1  
196 7年 ,V .O .Cordon建立了三角形的边长与高之间的不等式∑ a2h2b+h2c≥2 .[1] ①文 [2 ]将不等式①加强为∑ a2t2b+t2c≥2(ta、tb、tc 为三角形的内角平分线长 ,a、b、c为△ABC的边长 ,∑ 表示对a、b、c循环求和 ) .本文将证明 ∑ a2m2b+m2c≤2 (ma、mb、mc为三角形的中线长 ) ,等号当且仅当△ABC为正三角形时成立 .证明 :∑ a2m2b+m2c=∑ 4a24a2 +b2 +c2=∑ 4a22a2 + (a2 +b2 ) + (a2 +c2 )≤∑ 4a22a2 + 2ab + 2ac=∑ 2aa +b +c=2 ,当且仅当△ABC为正三角形时等号成立 .利用上述方法和凸函数的性质 ,易得∑ akmkb+mkc≤2 k- 1  …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号