首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、直接利用组合数公式证明二、利用组合定义证。 [例1] 求证 C_n~(m 1) C_n~(m-1) 2C_n~m=C_(n 2)~(m 1) 证:从n 2个不同元中取m 1个元的组合可分四类:i)含指定元甲、乙的有C_n~(m-1)种,ii)不含甲、乙的有C_n~(m 1)种,iii)、iv)含甲不含乙与含乙不含甲的各有C_n~m种。由加法原理得原式。三、利用组合性质证。如例1原式左=(C_n~(m 1) C_n~m (C_n~(m-1) C_n~m)=C_(n 1)~(m 1) C_(n 1)~m=C_(n 2)~(m 1)。  相似文献   

2.
对于形如C_n~0+C_n~k+C_n~(2k)+…+C_n~(lk)(其中k、l∈N。n-k相似文献   

3.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

4.
本文给出组合恒等式C_n~1+2C_N~2+3C_n~3+…+nC_n~n=n·2~(n-1)的六种证法.这个组合恒等式在证明其它组合恒等式和计算组合数的和时常常有用.  相似文献   

5.
一、什么是原型构造法先来看一简单例子:例1:证明组合性质C_(n 1)~m=C_n~(m 1) C_n~m.常规证法是利用组合数公式验证,现根据组合的意义,构造一个问题原型:考虑从n 1个运动员中选m个参赛,其组合数为C_(n 1)~m.分两种情况:队长上场和队长不上场,分别有C_n~(m-1)和C_n~m种组合,由加法原  相似文献   

6.
高中代数第三册P83有这样一道习题:例1.证明 C_n~1 2C_n~2 3C_n~3 … nC_n~n=n·2~(n-1).这道习题实质上就是求左边这些组合数的和,这些组合数前面的系数有一定的规律,下面对这类组合数求和问题作些探讨.  相似文献   

7.
有些数学关系既不易理解也不易记忆,但是把它和准确、形象、生动的实例联系在一起,困难便消失了。组合数的两个性质就是这样。C_n~m=C_n~(n-m)表示从n个元素里挑m个元素出来和挑n-m个元素留下是一回事。公式C_n~m=C_(n-1)~m+C_(n-1)~(m-1)表示从n个元素中挑m个元素可以分两种情况。不挑元素A的有C_(n-1)~m种,一定挑元素A的有C_(n-1)~(m-1)种。“无A”、“有A”是这个公式的“题眼”,抓住“题眼”,问题就迎刃而解了。 C_n~m=C_(n-1)~m+C_(n-1)~(m-1)和C_n~m=C_n~(n-m)分别表达了  相似文献   

8.
本文通过例题阐述证明组合等式时,如何根据题设特征选择适合的方法,供参考。一、待定系数法待定系数法的根据是多项式恒等定理:若 f(x)≡sum from i=0 to n a_ix~(n-i),g(x)≡sum from i=0 to n b_ix~(n-i),且,(x)≡g(x),则有a_i=b_i。(i=1,2,…,n). 例 1 求证C_m~0 C_n~k+C_m~1 C_n~(k-1)+…++C_m~k C_n~0=C_(m+n)~k。分析观察此式两端组合数的特点,即  相似文献   

9.
关于二项式定理的证明,课本上用的是数学归纳法。数学教师也未提供其它的证明方法。经过探索,现提供一种新的简捷证法。定理: (a+b)~n=C_n~0+C_n~(n-1)b+···+C_n~ka~(n-k)b~k+···+C_n~(n-1)ab~(n-1)+C_n~nb~n (n∈)N  相似文献   

10.
在组合数恒等式中,有一类可以通过对等式x~α(1+x~β)~n=sum form r=0 to n(C_n~rx~(a+rB)),(1+x)~n=sum form r=0 to n(C_n~rx~r)求导或积分而得,方法简便,且能揭示其数量之间的一般关系。兹举例如下: 1、[(1+x)~n]~′=(C_n~o+C_n~1X+C_n~2X~2+C_n~3X~4+…+C_n~rX~r+…+C_n~nX~n)′,  相似文献   

11.
1988年全国高中数学联赛第一试最后一题:已知a、b为正实数,且1/a 1/b=1,试证对每一个n∈N, (a b)~n-a~n-b~n≥2~(2n)-2~(n 1)(*) 这个不等式从形式上看较难证明,经过研究,笔者发现它有许多证法,择其简单的四种介绍如下: 证一应用二项式定理,得(a b)~n-a~n-b~n=C_n~1a~(n-1)b C_n~2a~(n-2)b~2 … C _n~(n-1)ab~(n-1) (1)根据组合数性质C_n~k=C_n~(n-k),由(1)得(a b)~n-a~n-b~n=C_n~1ab~(n-1) C_n~2a~2b~(n-2) 十… C_n~(n-1)a~(n-1)b (2)(1) (2)后两边除以2得  相似文献   

12.
约定:不言而喻,当m>n时,c_n~m=0。反之,零也可用c_n~m(m>n)表之。 公式1:C_(n+1)~m-C_n~m=C_n~(m-1)。 采用上述约定,公式中组合数的上标可不小于下标。从而,C_n~m  相似文献   

13.
在学习过程中,我们遇到求形如(1+2x+3x~2)~5的展开的项数问题,通过分析,我们猜测如下命题。我用已学过的组合性质C_(n+1)~m=C_n~(m-1)+C_n~m及二项式定理证明了这一命题。命题:(sum from i=1 to m a_i)~n(n≥1,m≥1)的展开项数为C_(m+n-1)~n项。证明:我们对自然数m用数学归纳法。①、当m=1、2时,对一切自然数n命题显然成立。②、假设m=k时,对一切自然数n命题成立。当m=k+1时, 据归纳假设,上式右端展开后,其项数分别为:C_k~0项,C_k~1项,C_(k+1)~2项,C_(k+2)~3项,…,C_(k+n-1)~n项。又由于上式右端a_(k+1)的方次不同,它们之间不可能再合并同类项。故有 (sum from i=1 to k+1 a_i)~n展开项数=C_k~0+C_k~1+C_(k+1)~2+C_(k+2)~3  相似文献   

14.
用数学归纳法证明整除性问题,如:求证f(n)能被a整除,设f(n)是随自然数变化的已知整式(或整数),a是给定的整式(或整数).由假设n=k时命题成立,来推证n=k+1时命题也成立,是最关键的一步,也是最难证明的一步.如果用f(k+1)除以f(k),求出它的余数(或余式),即设f(k+1)=qf(k)+r,q为商,r为余数(或余式).若r能被a整除,则由假设可知f(k+1)能被a整除,即n=k+1时命题也成立.这样,就极大地简化了证明过程.  相似文献   

15.
先看一个例题: 例1 求证:C_n~1/-C_n~2/2+C_n~3/3-……+(-1)~(n-1)·C_n~n/n=1+1/2+1/3+……+1/n。求证式等号两边均有n项。可用递推方法证之。证明:记S_n=C_n~1/1-C_n~3/2+C_n~3/3-……+(-1)~(n-1),C_n~n/n。  相似文献   

16.
现行高三数学中学到了二项式定理:(a+b)~n=C_n~0a~n+a_n~1a~(n-1)b+C_n~2a~(n-2)b~2+……+C_n~nb~n。若令a=1,b=1,代入上式,就得到(1+1)~n=C_n~0+C_n~1+C_n~2+……+C_n~n,这是全组合公式,即从n个元素中一个也不取,取一个、取二个、……、取n个元素的组合总数,那么(1+2)~n的展开式的组合原理是什么呢?或者说,它的数学模型是什么?下面我们先看一个具体问题。  相似文献   

17.
(a+b)~n展开式的二项式系数C_n~0、C_n~1、C_n~2…C_n~n从左至右先逐渐递增到最大值C_n~(n/2)(n为偶数)[或C_n~(n-1/2)、C_n~(n+1/2)(n为奇数)]时再逐渐减小,且有C_n~r=C_n~(n-r)(r=0,1,2,…n)。利用这个性质可以解组合不  相似文献   

18.
组合恒等式的证明是教学中的一个难点。有关书刊上一般都介绍了利用组合数公式、组合数性质、数学归纳法、二项式定理等很多证法。本文将探讨一种新的证明方法,即构造法证明组合恒等式。一、构造法证明思想的缘起让我们先看两个简单的组合问题例1、从n个不同元素中取出m个元素并成一组,有多少不同的方法? 解法一、设取法有N种。由组合数定义,得N=c_n~m 解法二、先从n个不同元素中选定n-m个,然后再将其余的m个元素取出,则N=c_n~(n-m) 解法三、设这n个不同元素为α_1、α_2、…α_m。从中取出m个元素有如下两类办法:即取出的m个元素中含有α_1或不含α_2两类。若含有α_1,则应从其余的n-1个元素中再取出m-1个元素,有c_(n-1)~(m-1)种方法;若不含α_1,则应从其余的n-1个元素中取出m个元素,有c_(n-1)~m种方法。由加法原理,得N=c_(n-1)~(m-1)+c_(n-1)~m。  相似文献   

19.
公式C_(n+1)~m=C_n~m+C_n~(m-1)的一个应用利用组合数性质公式C_(n+1)~m=C_n~m+C=_n~(m-1)可以求形如{n(n+1)…(n+k-1)}的数列的前n项和S_n。 [例1] 求和 S=1·2·3+2·3·4+…+n(n+1)(n+2) 解:1/3!S=1·2·3/3!+2·3·4·/3!…+n(n+1)(n+2)/3! =C_3~3+C_4~3+…+C_(n+2)~3=(C_4~4+C_4~3)+C_5~3+…+C_(n+2)~3 =(C_5~4+C_5~3)+C_6~3+…+C_(n+2)~3=…=C_(n+2)~4+C_(n+2)~3 =C_(n+3)~4=n(n+1)(n+2)(n+3)/4!,  相似文献   

20.
一类有关自然数的求和问题,若能将通项变形成组合数,构造出组合恒等式: C_(n-1)~m+C_(n-2)~m+C_(n-3)~m+…+C_(n+1)~m+C_m~m=C_n~(m+1)(高中代数第三册第81页18(2)题)。用其求和,则非常简捷。例1 求和 1×(3×1+1)+2×(3×2+1)+…+n(3n+1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号