首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
早在初中代数课上,就已经知道了两数和的平方公式 (x y)~2=x~2 2xy y~2(1)、这一公式的应用是极其广泛的。在这里,我们介绍它的部分应用。 一、推证公式问题 以下乘法公式 (x-y)~2=x~2-2xy y~2 (x y)(x-y)=x~2-y~2 (x y)~3=x~3 3x~2y 3xy~2 y~3 (x-y)~3=x~3-3x~2y 3xy~2-y~3 (x-y)(x~2 xy y~2)=x~3-y~3 (x y)(x~2-xy y~2)=X~3 y~3等都可运用公式(1)来推导 例1、求证:(x y)(x-y)=x~2=y~2 证:令a=(x y)/2,b=(x-y)/2, 则两数x、y的平方差,x~2-y~2=(a b)~2-(a-b)~2运用公式(1)有x~2-y~2=4ab据假设条件,得x~2-y~2=4(x y)/2·(x-y)/2,即x~2-y~2=(x y)(x-y) 例2、求证:(x-y)~3=x~3-3x~2y 3xy~2-y~3 证:将上式右端进行配方变换即得证 x~3-3x~2y 3xy~2-y~3 =x~3-2x~2y xy~2-x~2y 2xy~2-y~3 =x(x-y)~2-y(x-y)~2 =(x-y)~3 类似地,乘法公式都可用公式(1)来推导,此外,还可推证一些多项因式的乘法  相似文献   

2.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

3.
一类二元函数的条件最值,如能进行适当的齐次代换转化为分式函数,利用判别式法易于简捷巧妙地获解。例1 已知|3x-y|≥4,求S=2x~2-xy y~2的最小值,并求S取最小值时的x、y值。解:显然x,y不全为零,不妨设x≠0,令t=y/x。 u=S/(3x-y)~2=(2x~2-xy y~2)/(9x~2-6xy y~2)=(2-t t~2)/(9-6t t~2)化为(1-u)t~2 (6u-1)t (2-9u)=0其△=(6u-1)~2-4(1-u)(2-9u)=32u-7≥0,解得u≥7/32。  相似文献   

4.
多元函数最值问题不仅蕴含了丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力,下面通过例题介绍几种求这类最值问题的方法。一、配方法例1:求函数 f(x,y)=x~2-2xy 6y~2-14x-6y 72的最小值。解:f(x,y)=x~2-2xy 6y~2-14x-6y 72=(x-y-7)~2 5(y-2)~2 3≥3因此当 x-y-7-y-2=0即x=9,y=2时,f(x,y)的最小值为3  相似文献   

5.
方差用于衡量一个样本数据波动的大小,计公式为:S~2=1/n[(x_1-(?))~2 (x_2-(?))~2 … (x_n-(?))~2]=1/n[x_1~2 x_2~2 … x_n~2-1/n(x_1 x_2 … x_n)~2]。显然S~2≥0,仅当S~2=0时,x_1=x_2=…=x_n。例1已知实数x,y满足求xy的最大值。解视x,y为一组数据,其方差为S~2=1/2[x~2 y~2-1/2(x y)~2]=-1/4a~2 1/2a 3/4≥0。即(a 1)(a-3)≤0,所以或解得-1≤a≤3.所以xy=(x y)~2-(x~2 y~2)/2=5/2(a-2/5)~2-9/10。当a=3时,xy有最大值,为16。例2已知a,b,c三数满足方程组  相似文献   

6.
文[1]证明了一个不等武:0≤x,y,x_1,y_1≤1,x x_1=1,y y_1=1,则L_2=(x~2 y~2)~(1/2) (x~2_1 y~2)~(1/2) (x~2 y~2_1)~(1/2) (x~2_1 y~2_1)~(1/2)≤2 2~(1/2),并根据L_2的几何意义提出了猜想.设0≤z,y,z,x_1,y_1,z_1≤1,x x_1=1,y y_1=1,z z_1=1,则L_3=(x~2 y~2 z~2)~(1/2) (x~2_1 y~2 z~2)~(1/2) (x~2_1 y~2_1 z~2)~(1/2) (x~2 y~2_1 z~2)~(1/2) (x~2 y~2 z~2_1)~(1/2) (x~2_1 y~2 z~2_1)~(1/2) (x~2 y~2_1 z~2_1)~(1/2)  相似文献   

7.
求函数 y=x+(1-2x)~(1/2)的值域,一般用如下方法:由函数式得 y-x=(1-2x)~(1/2)(1)两边平方得 y~2-2xy+y~2=1-2x(2)整理得 x~2-2(y-1)x+(y~2-1)=0 (3)∵ x 是实数,  相似文献   

8.
在曲线的极坐标方程化到曲线的直角坐标方程时,常用到ρ~2=x~2+y~2。故ρ=±(x~2+y~2)~(1/2)。怎样确定“+”、“-”号?现在举例说明如下: 1.用ρ=(x~2+y~2)~(1/2)的情况。例1.化极坐标方程e~ρ=2+cosθ为直角坐标方程。解.因为2+cosθ≥1,所以原方程中ρ≥0,因此ρ=(x~2+y~2)~(1/2)。由e~ρ=2+cosθ得ρe~ρ=2ρ+ρcosθ。从而原方程可化为 (x~2+y~2)~(1/2)e~((x~2+y~2)~(1/2))=2(x~2+y~2)~(1/2)+x。例2.把极坐标方程ρ=1+cosθ化为直角坐标方程。  相似文献   

9.
凌本信 《数学教学》1993,(5):8-9,33
六年制重点中学解析几何课本194页第23题给出了这样一个结论:设二次曲线S_1、S_2(指非退化的情形,下同)的方程分别为 A_1x~2 B_1xy C_1y~2 D_1x E_1y F_1=0 (*) A_2x~2 B_2xy C_2y~2 D_2x E_2y F_2=0 (**) 如果(A_1-C_1)B_3=(A_2-C_2)B_1≠0,那么二次曲线S_1、S_2的交点在同一个圆上。显然(A_1-C_1)B_2=(A_3-C_2)B_1≠0是二次曲线S_1、S_2交点共圆的充分但不必要条件。例如双曲线xy=2与圆x~2 y~2=5;椭圆4x~2 9y~2=36与椭圆9x~2 4y~2=36;抛物线4x~2-4x 9y-35=0与双曲线x~2-4y~2-4=0的四个交点都是共圆的,但是它们都不符合(A_1-C_1)B_2=(A_2-C_2)B_1≠0的条件。  相似文献   

10.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

11.
正随着新课改的不断深入,很多教师越来越重视课本中的例题教学了.大家的共识是:对课本中的例题进行变式教学,有利于提高数学课堂的教学效益.现举一例,说明如下.例题计算:(x-3)(x+3)(x~2+9).(苏科版七年级(下).解原式=(x~2-9)(x~2+9)=x~4-81.变式1计算:(1)(xy-3)(xy+3)(x~2y~2+9);(2)(x-3y)(x+3y)(x~2+9y~2);解(1)原式=(x~2y~2-9)(x~2y~2+9)=x~4y~4-81;  相似文献   

12.
本刊95年第3期“集锦栏”中,有如下两个代数不等式: 若x,y,x∈R~ ,则 (1)(x~2 xy y~2)~(1/2) (y~2 yz z~2)~1/2 (z~2 zx x~2)~(1/2); 本文就上述不等式作两点探讨。  相似文献   

13.
高中部分 题 求函数y=(x~2 10)/(x~2 9)~(1/2)的最小值,并对有无最大值作出解答.解:由y=(x~2 10)/(x~2 9)~(1/2),得y=(x~2 9)~(1/2) 1/(x~2 9)~(1/2)设t=(x~2 9)~(1/2)(t≥3),则y=f(t)=t 1/t(t≥3).设3≤t_1相似文献   

14.
妙在增设     
例1 解方程5x~2 x-x(5x~2-1)~(1/2)=2.解:令 y=(5x~2-1)~(1/2),则5x~2=y~2 1,原方程化为:y~2 1 x-xy=2,y~2-1-x(y-1)=0,  相似文献   

15.
课本中给出的二元二次多项式的因式分解,一般都是能直接(或通过转化)利用公式进行分解的简单形式,如:4x~2+4xy+y~2=(2x+ y)~2,x~2-(y-2)~2=(x+y-2)(x-y+2).但对于不能直接用公式的一般形式的二元二次  相似文献   

16.
遇到与二次根式有关的求值问题,若能根据其结构特征,灵活运用各种代换策略,则能使运算化难为易,迅速获解.一、整体代换例1已知x=(3~(1/2)-2~(1/2))/(3~(1/2)+2~(1/2)),y=(3~(1/2)+2~(1/2))/(3~(1/2)-2~(1/2)),求代数式3x~2-5xy+3y~2的值.解∵x=(3~(1/2)-2~(1/2))/(3~(1/2)+2~(1/2))=(3~(1/2)-2~(1/2))~2=5-26~(1/2).y=(3~(1/2)+2~(1/2))/(3~(1/2)-2~(1/2))=(3~(1/2)+2~(1/2))~2=5+26~(1/2),∴x+y=10,xy=1.  相似文献   

17.
例1.已知x,y,z∈R~ ,且满足x~2xy y~2/3=25,y~2/3 z~2=9,z~2 zx ~2=10,求xy 2yz 3zx的值. 解原方程组变形为(受启于余弦定理)从而可构造△ABC如图1.  相似文献   

18.
构造法是一种重要的数学方法,在初中数学竞赛中有广泛的应用。解题时,抓住问题的结构特征,巧妙地构造出与之密切关联的数学模式(如代数式、方程、函数、图形等),往往能形成条件和结论之间的逻辑通道,从而达到解决问题的目的。本文拟通过举例说明这种方法的具体运用。一、构造对偶式例1 比(6~(1/2)+5~(1/2))~6大的最小整数是( ) (A)10581.(B)10110. (C)10109.(D)10582. (1992年西安交大少年班入学考试题) 解:令x=6~(1/2)+5~(1/2),y=6~(1/2)-5~(1/2),则x+y=2 6~(1/2),xy=1. ∴ x~2+y~2=(x+y)~2-2xy=22. ∴ x~6+y~6  相似文献   

19.
题目确定方程组{x+y+z=3;①x~2+y~2+z~2=3 ②x~3+y~3+z~3=3 ③的整数解. 解由①,得x+y=3-z,④由②,得(x+y)~2-2xy+z~2=3 ③  相似文献   

20.
配方法的思想对我们初中生来说是一种崭新的思维方式。当某些数学问题的研究讨论陷入僵持时,配方法常常能给予巧妙的配合,使我们突然间获得解决问题的方法和结果。 [例1] 化简(5 12(3 2(2~(1/2)))~(1/2))~(1/2) 解:原式=(5 12((2~(1/2) 1)~2)~(1/2))~(1/2) =(17 12(2~(1/2)))~(1/2) =(3~2 12(2~(1/2)) ((2(2~(1/2)))~2))~(1/2) =((3 2(2~(1/2)))~2)~(1/2) =3 2(2(1/2)) [例2] 已知:x~2 y~2 z~2 1/x~2 1/y~2 1/z~2=6,求证:xyz(x y z)=xy yz zx  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号