首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One variation of vertical jump (VJ) training is resisted or weighted jump training, where wearable resistance (WR) enables jumping to be overloaded in a movement specific manner. A two-way analysis of variance with Bonferroni post hoc contrasts was used to determine the acute changes in VJ performance with differing load magnitudes and load placements. Kinematic and kinetic data were quantified using a force plate and contact mat. Twenty sport active subjects (age: 27.8?±?3.8 years; body mass (BM): 70.2?±?12.2?kg; height: 1.74?±?0.78?m) volunteered to participate in the study. Subjects performed the counter movement jump (CMJ), drop jump (DJ) and pogo jump (PJ) wearing no resistance, 3% or 6% BM affixed to the upper or lower body. The main finding in terms of the landing phase was that the effect of WR was non-significant (P?>?.05) on peak ground reaction force. With regard to the propulsive phase the main findings were that for both the CMJ and DJ, WR resulted in a significant (P?<?.05) decrease in jump height (CMJ: ?12% to ?17%, DJ: ?10% to ?14%); relative peak power (CMJ: ?8% to ?17%, DJ: ?7% to ?10%); and peak velocity (CMJ: ?4% to ?7%, DJ: ?3% to ?8%); while PJ reactive strength index was significantly reduced (?15% to ?21%) with all WR conditions. Consideration should be given to the inclusion of WR in sports where VJ’s are important components as it may provide a novel movement specific training stimulus.

Highlights

  • WR of 3 or 6 % BM provided a means to overload the subjects in this study resulting in decreased propulsive power and velocity that lead to a reduced jump height and landing force.

  • Specific strength exercises that closely mimic sporting performance are more likely to optimise transference, therefore WR with light loads of 3–6% body mass (BM)appear a suitable tool for movement specific overload training and maximising transference to sporting performance.

  • Practitioners can safely load their athletes with upper or lower body WR of 3–6% BM without fear of overloading the athletesover and above the landing forces they are typically accustomed too.

  • As a training stimulus it would seem the WR loading provides adequate overload and athletes should focus on velocity of movement to improve power output and jump height i.e. take-off velocity.

  相似文献   

2.
Weighted vests are widely used to improve running economy and performance. However, it is not well-studied how running mechanics are adapted to counteract the higher peak vertical ground reaction forces (Fpeak) while running with such a device. Therefore, the present study aimed to investigate the effects of different loading conditions on running mechanics at different velocities. Thirteen subjects participated in two separate sessions one week apart. In the first session, maximal aerobic speed (MAS) was determined through a maximal incremental running test while in the second session, they were instructed to run during one minute under different loading (0%, +10% and +20% of body mass [BM]) and velocity (60%, 80% and 100% of MAS) conditions in a random order. Spatiotemporal data were recorded and then running mechanics modelled using the spring-mass model. The main results indicated that vertical and leg stiffness (Kvert and Kleg, respectively) were increased (P?P?>?.05) when load was changed. At the same time, alterations of the running kinematics were observed such as longer contact times, reduced flight times, stride frequencies and step lengths, as well as an increase of the centre of mass dynamics. Based on these results it is assumed that runners maintain a certain stiffness level for each velocity despite different loading conditions. As a consequence, Fpeak increases and this probably causes spatiotemporal adjustments in the movement kinematics.  相似文献   

3.
Abstract

The purpose of the present study was to relate 3D acceleration patterns of the lower and upper trunk during running to running gait cycle, assess the validity of stride duration estimated from acceleration patterns, investigate speed-dependent changes in acceleration, and examine the test–retest reliability of these parameters. Thirteen healthy young men performed two running trials each on a treadmill and on land at three speeds (slow, preferred, and fast). The 3D accelerations were measured at the L3 spinous process (lower trunk) and the ensiform process (upper trunk) and synchronised with digital video data. The amplitude and root mean square of acceleration and stride duration were calculated and then analysed by three-way analysis of variance to test effects of running conditions, device location, and running speed. Bland-Altman analysis was used to evaluate the test–retest reliability. Marked changes in acceleration were observed in relation to foot strike during running. Stride durations calculated from the vertical accelerations were nearly equal to those estimated from video data. There were significant speed effects on all parameters, and the low test–retest reliability was confirmed in the anterior–posterior acceleration during treadmill running and the anterior–posterior acceleration at slow speed during treadmill and overground running.  相似文献   

4.
The purpose of this study was to identify the influence of cryotherapy on lower extremity running biomechanics. Twenty-six healthy male volunteers were randomised into two intervention groups: cold water (cold water at ~11°C) or tepid water (tepid water at ~26°C). They were required to run at 4.0 ± 0.2 m · s?1 before and after they underwent water immersion for 20 min. Differences between pre- and post-intervention were used to compare the influence of water intervention during running. Peak joint angles, peak joint moments, peak ground reaction forces (GRF) and contact time (CT) were calculated using three-dimensional gait analysis. Independent t-tests were applied with a significant alpha level set at 0.05. Decreased peak propulsive and vertical GRF, decreased plantarflexion moments, increased hip flexion angle and longer CT were observed following cold water immersion. Although cold water immersion (cryotherapy) affected the running movement, none of the alterations have been related to running biomechanical patterns associated with injuries. Therefore, our results indicated that cold water immersion appears safe prior to running activities.  相似文献   

5.
Abstract

The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([Vdot]O2max), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [Vdot]O2max (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

6.
This study aimed to determine the effect of different percentages of body weight support (BWS) on spatiotemporal step characteristics during running. 26 endurance runners (age: 37 ± 9 years) completed a running treadmill protocol consisting of 6 different conditions (BWS combinations: 0–50%), with velocity maintained at 12 km/h. Each condition lasted 1 minute. Step angle, ground contact time (CT), flight time (FT), step length (SL) and frequency (SF), and duration of phases during stance time (phase1: initial contact; phase2: midstance; phase3: propulsion) were measured for every step during the test using a photoelectric cell system. Compared with the baseline condition (100% BW), FT was longer, CT was shorter, SL was longer, SF was lower, and the step angle was higher with each increase in BWS (p < 0.05). Also, some changes were observed in the duration of phases during stance time: phase1 did not experience changes across experimental conditions (p = 0.096), phase2 decreased and phase3 increased as BW was supported (p < 0.05). These results indicate that as BW was supported, runners showed longer FT and SL, shorter CT, lower SF, and greater step angle as well as some changes in the phases during the ground contact. Therefore, this study highlights the effect of different percentages of BWS on spatiotemporal parameters.  相似文献   

7.
This study examined the impact of load on lower body performance variables during the hang power clean. Fourteen men performed the hang power clean at loads of 30%, 45%, 65%, and 80% 1RM. Peak force, velocity, power, force at peak power, velocity at peak power, and rate of force development were compared at each load. The greatest peak force occurred at 80% 1RM. Peak force at 30% 1RM was statistically lower than peak force at 45% (p = 0.022), 65% (p = 0.010), and 80% 1RM (p = 0.018). Force at peak power at 65% and 80% 1RM was statistically greater than force at peak power at 30% (p < 0.01) and 45% 1RM (p < 0.01). The greatest rate of force development occurred at 30% 1RM, but was not statistically different from the rate of force development at 45%, 65%, and 80% 1RM. The rate of force development at 65% 1RM was statistically greater than the rate of force development at 80% 1RM (p = 0.035). No other statistical differences existed in any variable existed. Changes in load affected the peak force, force at peak power, and rate of force development, but not the peak velocity, power, or velocity at peak power.  相似文献   

8.
目的:探究习惯后足着地者和习惯前足着地者在跑步支撑期下肢动力学的不同。方法:采用 Kistler三维测力台(采集力学指标,1 000 Hz)采集受试者跑步支撑期(测试足从足着地到足离地)的动力学数据。结果:习惯后足着地组(RFS)在支撑时间上比习惯前足着地组(FFS)的时间微长,但二者不具有显著差异(P>0.05);RFS组在支撑期内外方向的最小值和最大值均小于FFS组,且呈显著差异(P<0.05);RFS组在支撑期前后方向的最小值(即制动力峰值)和最大值(即加速力峰值)均要高于FFS组,且呈显著差异(P<0.05);FFS组在支撑期垂直方向的最大峰值力和第一载荷率均高于RFS组,但不具有显著差异,且出现峰值时间无显著差异(P>0.05)。结论:跑步时不同的着地方式影响了下肢的生物力学特征,习惯后足着地者跑步支撑期下肢动力学特征与习惯前足着地者主要在内外方向和前后方向上具有一定的差异。  相似文献   

9.
Weight bearing (WB) activity is important for healthy skeletal development. The magnitude of loading during WB activities, especially upper limb impacts, has yet to be quantified in children. This study quantifies ground reaction forces (GRF) experienced by children performing WB activities and examines the contribution of body weight (BW) to GRF. Fifty children, aged 8–12 were recruited (34 males). GRF were measured using force plates during 20 upper and lower limb activities (such as landing on the feet and hands). Sex differences in GRF and associations between peak force and BW were examined using independent sample t-tests and linear regressions (p < 0.05), respectively. Lower limb GRF varied from 2-6x BW with no significant sex differences. GRF during upper limb activities varied from 1/3–1.7x BW with males experiencing significantly greater GRF for 25% of activities. BW was significantly associated with peak force in almost all activities; however, GRF variation explained by BW was wide-ranging across activities and not dependent on limb or activity type (static vs dynamic). Therefore, factors other than BW, such as technique, may be important in determining forces experienced by children performing WB activity and should be considered when choosing activities for WB activity interventions.  相似文献   

10.
Abstract

Twelve participants ran (9 km · h?1) to test two types of running shoes: replica and original shoes. Ground reaction force, plantar pressure and electromyographic activity were recorded. The shoes were tested randomly and on different days. Comparisons between the two experimental conditions were made by analysis of variance (ANOVA) test (P ≤ 0.05). The time to first peak, loading rate of the first peak and impulse of the first 75 ms of stance were significantly different between the shoes (P ≤ 0.05), revealing an increase of impact forces for the replica shoes. The peak plantar pressure values were significantly higher (P ≤ 0.05) when wearing replica shoes. During running, the contact area was significantly smaller (P ≤ 0.05) for the replica shoe. The electromyographic activity of the analysed muscles did not show changes between the two shoes in running. These findings suggest that the use of replica running shoes can increase the external load applied to the human body, but may not change the muscle activity pattern during locomotion. This new mechanical situation may increase the risk of injuries in these movements.  相似文献   

11.
Abstract

Research with cyclists suggests a decreased load on the lower limbs by placing the shoe cleat more posteriorly, which may benefit subsequent running in a triathlon. This study investigated the effect of shoe cleat position during cycling on subsequent running. Following bike-run training sessions with both aft and traditional cleat positions, 13 well-trained triathletes completed a 30?min simulated draft-legal triathlon cycling leg, followed by a maximal 5?km run on two occasions, once with aft-placed and once with traditionally placed cleats. Oxygen consumption, breath frequency, heart rate, cadence and power output were measured during cycling, while heart rate, contact time, 200?m lap time and total time were measured during running. Cardiovascular measures did not differ between aft and traditional cleat placement during the cycling protocol. The 5?km run time was similar for aft and traditional cleat placement, at 1084?±?80?s and 1072?±?64?s, respectively, as was contact time during km 1 and 5, and heart rate and running speed for km 5 for the two cleat positions. Running speed during km 1 was 2.1%?±?1.8 faster (P?<?0.05) for the traditional cleat placement. There are no beneficial effects of an aft cleat position on subsequent running in a short distance triathlon.  相似文献   

12.
以当代短跑训练理论为指导,运用文献资料、个案研究、实验等方法对江苏省女子优秀短跑运动员秦旺萍进行增强髋关节力量训练的跟踪研究。研究认为增强髋关节力量(尤其是伸髋力量)对优秀短跑运动员具有十分重要的意义,它是当代优秀短跑选手以髋为轴高速摆动技术的重要保证,在短跑力量训练中应引起足够的重视。  相似文献   

13.
In its last position stand about strength training, the American College of Sports Medicine recommends a rest interval (RI) between sets ranging between 1 and 3?min, varying in accordance with the objective. However, there is no consensus regarding the optimal recovery between sets, and most studies have investigated fixed intervals. Therefore, the aim of this study was to analyse the effects of fixed versus self-suggested RI between sets in lower and upper body exercises performance. Twenty-seven healthy subjects (26?±?1.5; 75?±?15?kg; 175?±?12?cm) were randomly assigned into two groups: G1: lower body exercises and G2: upper body exercises. Squat and leg press 1 repetition maximum (1RM) were tested for the G1 and bench press and biceps curl 1RM for G2. After the 1RM tests, both groups performed three sets to concentric failure with 75% of 1RM in combination with different RIs (2?min or self-suggested) on separate days and the exercises performance was evaluated by the number of repetitions. The results demonstrated no significant differences in the number of repetitions between 2?min and self-suggested RIs that presented similar reductions with the sets progression. It was also shown that the self-suggested RI spent less time recovering than the 2?min RI group on average. This suggests that for individuals with previous experience, the self-suggested RI can be an effective option when using workloads commonly prescribed aiming hypertrophy. Also, the self-suggested RI can reduce the total training session duration, which can be a more time-effective strategy.  相似文献   

14.
Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.  相似文献   

15.
Research has focused on parameters that are associated with injury risk, e.g. vertical acceleration. These parameters can be influenced by running on different surfaces or at different running speeds, but the relationship between them is not completely clear. Understanding the relationship may result in training guidelines to reduce the injury risk. In this study, thirty-five participants with three different levels of running experience were recruited. Participants ran on three different surfaces (concrete, synthetic running track, and woodchip trail) at two different running speeds: a self-selected comfortable speed and a fixed speed of 3.06 m/s. Vertical acceleration of the lower leg was measured with an accelerometer. The vertical acceleration was significantly lower during running on the woodchip trail in comparison with the synthetic running track and the concrete, and significantly lower during running at lower speed in comparison with during running at higher speed on all surfaces. No significant differences in vertical acceleration were found between the three groups of runners at fixed speed. Higher self-selected speed due to higher performance level also did not result in higher vertical acceleration. These results may show that running on a woodchip trail and slowing down could reduce the injury risk at the tibia.  相似文献   

16.
The purpose of this study was to examine the differences in coordination variability in running gait between trained runners and non-runners using continuous relative phase (CRP) analysis. Lower extremity kinematic data were collected for 22 participants during the stance phase. The participants were assigned to either a runner or non-runner group based on running volume training. Segment coordination and coordination variability were calculated for selected hip–knee and knee–ankle couplings. Independent t-tests and magnitude-based inferences were used to compare the 2 groups. There were limited differences in the CRP and its variability among runners and non-runner groups. The runners group achieved moderately lower coordination compared with non-runners group in the phase angle for hip abduction/adduction and knee flexion/extension. The runners tended to show moderately lower coordination variability in the phase angle for knee flexion/extension and subtalar inversion/eversion in comparison to non-runners group. These results suggested that levels of experience as estimated from weekly training volume had little influence on coordination and its variability.  相似文献   

17.
Abstract

Controversy exists whether custom-made insoles are more effective in reducing plantar loading compared to prefabricated insoles. Forty recreational athletes ran using custom-made, prefabricated, and the original insoles of their running shoes, at rest and after a fatigue run. Contact time, stride rate, and plantar loading parameters were measured. Neither the insole conditions nor the fatigue state modified contact time and stride rate. Addressing prevention of running injuries, post-fatigue loading values are of great interest. Custom-made insoles reduced the post-fatigue loading under the hallux (92 vs. 130 kPa, P < 0.05), medial midfoot (70 vs. 105 kPa, P < 0.01), and lateral midfoot (62 vs 96 kPa, P < 0.01). Prefabricated insoles provoked reductions in post-fatigue loading under the toes (120 vs. 175 kPa, P < 0.05), medial midfoot (71 vs. 105 kPa, P < 0.01), and lateral midfoot (68 vs. 96 kPa, P < 0.01). Regarding both study insoles, custom-made insoles reduced by 31% and 54% plantar loading under the medial and lateral heel compared to the prefabricated insoles. Finally, fatigue state did not influence plantar loading regardless the insole condition. In long-distance races, even a slight reduction in plantar loading at each foot strike may suppose a significant decrease in the overall stress experienced by the foot, and therefore the use of insoles may be an important protective mechanism for plantar overloading.  相似文献   

18.
A two‐dimensional, dynamic bioengineering model of the lower limbs was developed in order to estimate muscle and joint forces present during running at 4.5 m s ‐1. Data were collected from four subjects using a force platform and cine film. Individual X‐rays and anthropometric data from the lower limbs were utilized to produce accurate bone models of the subjects’ legs. Electromyographic verification of the model was undertaken while a runner was undergoing treadmill running at 4.5 m s‐1. Results indicate that peak muscle forces of 22 times subject body weight (22 BW) could be present in the quadriceps muscle group and 7 BW in the gastrocnemius. The anterior shin muscles were found to be active for the first 9% of stance phase only, and compressive loads of 33 BW were found in the knee joint. The relationship between these nigh forces in the lower limbs and running related injuries is discussed.  相似文献   

19.
The aim of the present study was to evaluate the effects of a 12-week home-based strength, explosive and plyometric (SEP) training on the cost of running (Cr) in well-trained ultra-marathoners and to assess the main mechanical parameters affecting changes in Cr. Twenty-five male runners (38.2?±?7.1 years; body mass index: 23.0?±?1.1?kg·m?2; V˙O2max: 55.4?±?4.0 mlO2·kg?1·min?1) were divided into an exercise (EG?=?13) and control group (CG?=?12). Before and after a 12-week SEP training, Cr, spring-mass model parameters at four speeds (8, 10, 12, 14?km·h?1) were calculated and maximal muscle power (MMP) of the lower limbs was measured. In EG, Cr decreased significantly (p?<?.05) at all tested running speeds (?6.4?±?6.5% at 8?km·h?1; ?3.5?±?5.3% at 10?km·h?1; ?4.0?±?5.5% at 12?km·h?1; ?3.2?±?4.5% at 14?km·h?1), contact time (tc) increased at 8, 10 and 12?km·h?1 by mean +4.4?±?0.1% and ta decreased by ?25.6?±?0.1% at 8?km·h?1 (p?<?.05). Further, inverse relationships between changes in Cr and MMP at 10 (p?=?.013; r?=??0.67) and 12?km·h?1 (p?<?.001; r?=??0.86) were shown. Conversely, no differences were detected in the CG in any of the studied parameters. Thus, 12-week SEP training programme lower the Cr in well-trained ultra-marathoners at submaximal speeds. Increased tc and an inverse relationship between changes in Cr and changes in MMP could be in part explain the decreased Cr. Thus, adding at least three sessions per week of SEP exercises in the normal endurance-training programme may decrease the Cr.  相似文献   

20.
Research to enhance running performance has led to the design of a leaf spring-structured midsole shoe (LEAF). In treadmill running, it has been shown that LEAF led to an increased running economy and increased stride length (SL) through a horizontal foot shift during stance compared to a standard foam shoe (FOAM). The purpose of this study was to analyse whether (a) these findings can also be observed in overground running and (b) relations exist between spatio-temporal variables and running economy. Ten male long-distance heel-strike runners ran at their individual 2?mmol/l blood lactate speed with LEAF and FOAM in randomized order. Kinematic data were recorded with an inertial measurement unit synchronized with 2D video. Oxygen consumption was measured using an automated metabolic gas analysis system. Blood lactate was collected after each run. The strike pattern was unaffected by LEAF. SL was increased by 0.9?±?1.1?cm (95% CI 0.2 to 1.5; p?=?.040; dz?=?0.76), stride rate (SR) was reduced by ?0.4?±?0.3?strides/min (95% CI ?0.6 to ?0.1; p?=?.029; dz?=?0.82) and oxygen consumption tended to be reduced by 1% (?0.4?±?0.6?ml/min/kg; 95% CI ?0.8 to 0.0; p?=?.082; dz?=?0.62) when running with LEAF compared to FOAM. Changes in oxygen consumption in LEAF were correlated with SL (r?=?0.71; p?=?.022) and SR (r?=??0.68; p?=?.031). It can be concluded that LEAF has the potential to cause small changes in spatio-temporal variables during running. Runners increasing SL and decreasing SR in response to LEAF can achieve small improvements in running economy, which is beneficial in terms of performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号