首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between inappropriate breast support and upper-extremity kinematics for female runners is unclear. The purpose of this study was to investigate the effect of breast support and breast pain on upper-extremity kinematics during running. Eleven female recreational runners with larger breasts (UK D and E cup) completed a 7 min 20 s treadmill run (2.58 m · s?1) in a high and low breast support condition. Multi-planar breast and upper-extremity kinematic data were captured in each breast support condition by eight infrared cameras for 30 s towards the end of the run. Breast pain was rated at the end of each treadmill run using a numeric analogue scale. The high support bra reduced breast kinematics and decreased breast pain (P < 0.05). Upper-extremity kinematics did not differ between breast support conditions (P > 0.05), although some moderate positive correlations were found between thorax range of motion and breast kinematics (r = 0.54 to 0.73). Thorax and arm kinematics do not appear to be influenced by breast support level in female runners with large breasts. A high support bra that offers good multi-planar breast support is recommended for female runners with larger breasts to reduce breast pain.  相似文献   

2.
Athletes in the 3,000 m steeplechase track and field event negotiate unmovable hurdles and waterjumps. Ground reaction forces (GRF) in the steeplechase were quantified to elucidate injury risks / mechanisms and to inform coaches. Five male and five female steeplechasers participated. GRF were measured during treadmill running, and using specially mounted force platforms, during hurdle and waterjump takeoffs and landings at 5.54 m/s (males) or 5.00 m/s (females). Results are presented as: male mean ± SD / female mean ± SD. Initial and active peaks of vertical GRF during treadmill running were 2.04 ± 0.72 / 2.25 ± 0.28 BW and 3.11 ± 0.27 / 2.98 ± 0.24 BW. Compared to treadmill running, peak vertical forces were greater (p < 0.001) for: hurdle takeoff (initial: 4.25 ± 0.86 / 3.78 ± 0.60 BW, active: 3.82 ± 0.20 / 3.74 ± 0.32 BW), hurdle landing (active: 4.41 ± 1.13 / 4.21 ± 0.21 BW), waterjump takeoff (initial: 4.32 ± 0.67 / 4.56 ± 0.54 BW, active: 4.00 ± 0.24 / 3.83 ± 0.31 BW), and waterjump landing (initial: 3.45 ± 0.34 / #3.78 ± 0.32 BW, active:5.40 ± 0.78 / #6.23 ± 0.74 BW); (#) indicates not statistically compared (n = 2). Based on horizontal impulse, athletes decelerated during takeoff steps and accelerated during landing steps of both hurdling and waterjumps. Vertical GRF peaks and video indicated rearfoot strikes on the treadmill but midfoot strikes during hurdle and waterjump landings. Potentially injurious GRF occur during the steeplechase, particularly during waterjump landings (up to 7.0 BW).  相似文献   

3.
The aim of this study was to investigate the technique adaptations made when performing sprint-based tasks without (free condition) and with (constrained condition) the constraints of carrying a field hockey stick. Three free and three constrained maximal sprint accelerations were performed by 18 experienced university male field hockey players (age = 20 ± 1 years, body mass = 73.3 ± 7.1 kg, and stature = 1.78 ± 0.05 m). An automatic motion analysis system tracked sagittal plane active marker locations (200 Hz). M sprint velocity during the 18–22 m (free: 8.03 ± 0.43 m/s; constrained: 7.93 ± 0.36 m/s) interval was significantly (p = 0.03) different between free and constrained conditions. While the M stride length and stride frequency was similar between free and constrained conditions in the 2–13 m capture volume, the free condition elicited a 0.10 m/s faster (p = 0.03) stride velocity. Further significant differences were found between free and constrained kinematic profiles (p ≤ 0.05) for the hip angular velocity at touchdown during the 2–12 m interval of the sprints and in the overall sprint technique coordination between free and constrained conditions. Performance and technique adaptations indicated that sprint-training protocols for field sports should integrate specific equipment constraints to ensure explicit replication of the mechanical demands of the skills underpinning superior performance.  相似文献   

4.
Purpose: The purpose of this investigation was to examine the effects of a submaximal running warm-up on running performance in male endurance athletes (n = 16, Mage = 21 ± 2 years, MVO2max = 69.3 ± 5.1 mL/kg/min). Method: Endurance performance was determined by a 30-min distance trial after control and submaximal running warm-up conditions in a randomized crossover fashion. The warm-up began with 5 min of quiet sitting, followed by 6 min of submaximal running split into 2-min intervals at speeds corresponding to 45%, 55%, and 65% maximal oxygen consumption (VO2max). A 2-min walk at 3.2 km/hr concluded the 13-min warm-up protocol. For the control condition, participants sat quietly for 13 min. VO2 and heart rate (HR) were determined at Minutes 0, 5, and 13 of the pre-exercise protocol in each condition. Results: At the end of 13 min prior to the distance trial, mean VO2 (warm-up = 14.1 ± 2.2 mL/kg/min vs. control = 5.5 ± 1.7 mL/kg/min) and mean HR (warm-up = 105 ± 11 bpm vs. control = 67 ± 11 bpm) were statistically greater (p < .001) in the warm-up condition compared with the control condition. The distance run did not statistically differ (p = .37) between the warm-up (7.8 ± 0.5 km) and control (7.7 ± 0.6 km) conditions; however, effect size calculation revealed a small effect (d = 0.2) in favor of the warm-up condition. Thus, the warm-up employed may have important and practical implications to determine placing among high-level athletes in close races. Conclusions: These findings suggest a submaximal running warm-up may have a small but critical effect on a 30-min distance trial in competitive endurance athletes. Further, the warm-up elicited increases in physiological variables VO2 and HR prior to performance; thus, a submaximal specific warm-up should warrant consideration.  相似文献   

5.
Purpose: The purpose of this study was to determine if anaerobic performance as measured by the Wingate is decremented in elite female athletes when fraction of inspired oxygen is decreased from 20.9% to 10%. Method: Nine collegiate female soccer players (Mweight = 63.2 ± 10 kg, Mheight = 164 ± 4.7 cm, Mage = 18.6 ± 0.5 year) performed 1 Wingate test under each condition separated by at least 24 hr. Oxygen consumption was measured breath by breath using a Sensor-Medics metabolic cart. Postexercise blood lactates were measured using the finger-stick method. During normoxic and hypoxic (10% inspired oxygen [O2]) conditions, participants inhaled air from a 300-L weather balloon during the 30-s test. Results: Peak power, minimum power, average power, postexercise blood lactate, preexercise and postexercise blood O2 saturation, and total O2 consumed during exercise and during recovery were not statistically different between conditions. However, the Fatigue Index and peak ventilation were significantly greater during hypoxia than normoxia (35 ± 11% vs. 27 ± 9% &; 91.6 ± 14.2 L/min vs. 75.2 ± 11.1 L/min, respectively, p < .05, Cohen's d = ? 0.80 and ? 1.29, respectively). Ventilation was elevated during hypoxia within 5 s of beginning the Wingate and remained elevated throughout exercise. This increased ventilation was sufficient to maintain oxygen consumption during exercise. Conclusion: Under hypoxic conditions, the ventilatory response to the Wingate test is perhaps more important than aerobic capacity per se in determining whether or not Wingate performance is decremented.  相似文献   

6.
This investigation examined step-by-step kinematics of sprint running acceleration. Using a randomised counterbalanced approach, 37 female team handball players (age 17.8 ± 1.6 years, body mass 69.6 ± 9.1 kg, height 1.74 ± 0.06 m) performed resisted, assisted and unloaded 20-m sprints within a single session. 20-m sprint times and step velocity, as well as step length, step frequency, contact and flight times of each step were evaluated for each condition with a laser gun and an infrared mat. Almost all measured parameters were altered for each step under the resisted and assisted sprint conditions (η2 ≥ 0.28). The exception was step frequency, which did not differ between assisted and normal sprints. Contact time, flight time and step frequency at almost each step were different between ‘fast’ vs. ‘slow’ sub-groups (η2 ≥ 0.22). Nevertheless overall both groups responded similarly to the respective sprint conditions. No significant differences in step length were observed between groups for the respective condition. It is possible that continued exposure to assisted sprinting might allow the female team-sports players studied to adapt their coordination to the ‘over-speed’ condition and increase step frequency. It is notable that step-by-step kinematics in these sprints were easy to obtain using relatively inexpensive equipment with possibilities of direct feedback.  相似文献   

7.
Abstract

The objective of this study was to evaluate the effects of a 20-min focal knee joint cooling intervention on quadriceps central activation ratio (CAR) in healthy volunteers. A counterbalanced, cross-over study assessed the effects of a focal joint cooling intervention compared with a control condition 3–14 days apart. Eleven healthy volunteers (6 males, 5 females; age 25 ± 5 years; height 1.71 ± 0.1 m, mass 77 ± 21 kg) were included in the final analysis. The joint cooling intervention consisted of two 1.5-litre ice bags applied to the knee joint for 20 min, in one of two counterbalanced sessions, completed 3–14 days apart. In the control session, participants sat quietly between the baseline and 20-min measurements. Quadriceps CAR was assessed at 70° of knee flexion at four instants (baseline, 20, 30, and 45 min). There was a significant treatment × time interaction (F 3,30 = 5.9, P = 0.003) and post hoc analyses revealed that CAR was higher in the focal knee joint cooling session than the control session at 20 min (0.79 ± 0.12 vs. 0.70 ± 0.12; t 10 = 3.9, P = 0.003) and 45 min (0.77 ± 0.10 vs. 0.69 ± 0.12; t 10 = 3.1, P = 0.01). The CAR tended to be higher during the experimental session than the control session at 30 min (0.79 ± 0.13 vs. 0.74 ± 0.11; t 10 = 2.1, P = 0.07).Volitional activation increased following focal knee joint cooling in healthy volunteers.  相似文献   

8.
Abstract

As with other match analysis systems, ProZone® uses an absolute speed threshold to identify running speeds at “high-intensity”. In this study, we examined the use of an individualized high-intensity speed threshold based on the speed at the second ventilatory threshold (VT2speed) for assessment of the distance run at high-intensity during matches. Ten professional soccer players completed a maximal treadmill test to determine VT2speed. Match data were identified by means of the ProZone® match analysis system. The distances run at high-intensity during matches were calculated using the default value (19.8 km · h?1) and VT2speed. Differences between VT2speed and the default were analysed using a non-parametric median sign test. The distances run at high-intensity were compared with a paired t-test. The median VT2speed was 15 km · h?1 (range 14–16 km · h?1), which was less than the default (P < 0.01). Mean distance run at high-intensity based on the default and VT2speed was 845 m (s = 296) and 2258 m (s = 707), respectively [mean difference 1413 m; P < 0.001 (95% CI: 1037–1789 m)]. The high-intensity running speeds based on the second ventilatory threshold are substantially less than that used as the default within the ProZone® match analysis system, thus the distance run at high-intensity can be substantially underestimated.  相似文献   

9.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

10.
The aim of this study was to investigate the effects of sodium bicarbonate (NaHCO3) on 4 km cycling time trial (TT) performance when individualised to a predetermined time to peak blood bicarbonate (HCO3?). Eleven male trained cyclists volunteered for this study (height 1.82 ± 0.80 m, body mass (BM) 86.4 ± 12.9 kg, age 32 ± 9 years, peak power output (PPO) 382 ± 22 W). Two trials were initially conducted to identify time to peak HCO3? following both 0.2 g.kg?1 BM (SBC2) and 0.3 g.kg?1 BM (SBC3) NaHCO3. Thereafter, on three separate occasions using a randomised, double-blind, crossover design, participants completed a 4 km TT following ingestion of either SBC2, SBC3, or a taste-matched placebo (PLA) containing 0.07 g.kg?1 BM sodium chloride (NaCl) at the predetermined individual time to peak HCO3?. Both SBC2 (?8.3 ± 3.5 s; p < 0.001, d = 0.64) and SBC3 (?8.6 ± 5.4 s; p = 0.003, d = 0.66) reduced the time to complete the 4 km TT, with no difference between SBC conditions (mean difference = 0.2 ± 0.2 s; p = 0.87, d = 0.02). These findings suggest trained cyclists may benefit from individualising NaHCO3 ingestion to time to peak HCO3? to enhance 4 km TT performance.  相似文献   

11.
Abstract

The aim of the study is the modelling of training responses with a variable dose-response model in a sport discipline that requires highly complex coordination. We propose a method to optimise the training programme plan using the potential maximal performance gain associated with overload and tapering periods. Data from five female elite gymnasts were collected over a 3-month training period. The relationship between training amounts and performance was then assessed with a non-linear model. The optimal magnitude of training load reduction and its duration were investigated with and without an overload period using simulation procedures based on individual responses to training. The correlation between actual and modelled performances was significant (R 2 = 0.81 ± 0.02, P < 0.01). The standard error was 2.7%. Simulations revealed that taper preceded by an overload period allows a higher performance to be achieved compared to an absence of overload period (106.3 ± 0.3% vs. 105.1 ± 0.3%). With respect to the pre-taper load, the model predicts that optimal load reductions during taper were 48.4 ± 0.7% and 42.5 ± 1.0% for overloading and non-overloading strategies, respectively. Moreover, optimal durations of the taper period were 34 ± 0.5 days and 22 ± 0.5 days for overloading and non-overloading strategies, respectively. In conclusion, the study showed that the variable dose-response model describes precisely the training response in gymnasts.  相似文献   

12.
Abstract

This study assessed muscle recruitment patterns and stroke kinematics during ergometer and on-water rowing to validate the accuracy of rowing ergometry. Male rowers (n = 10; age 21 ± 2 years, height 1.90 ± 0.05 m and body mass 83.3 ± 4.8 kg) performed 3 × 3 min exercise bouts, at heart and stroke rates equivalent to 75, 85 and 95% V?O2peak, on both dynamic and stationary rowing ergometers, and on water. During exercise, synchronised data for surface electromyography (EMG) and 2D kinematics were recorded. Overall muscle activity was quantified by the integration of rmsEMG and averaged for each 10% interval of the stroke cycle. Muscle activity significantly increased in rectus femoris (RF) and vastus medialis (VM) (<0.01), as exercise intensity increased. Comparing EMG data across conditions revealed significantly (P <0.05) greater RF and VM activity during on-water rowing at discrete 10% intervals of stroke cycle. In addition, the drive/recovery ratio was significantly lower during dynamic ergometry compared to on-water (40 ± 1 vs. 44 ± 1% at 95%, <0.01). Results suggest that significant differences exist while comparing recruitment and kinematic patterns between on-water and ergometer rowing. These differences may be due to altered acceleration and deceleration of moving masses on-ergometer not perfectly simulating the on-water scenario.  相似文献   

13.
Previous study has showed superior sensory organisation ability in rhythmic gymnasts, but mostly in longitudinal data. With a cross-sectional design, this study used a dual-task paradigm to examine the above phenomenon. Fifteen female rhythmic gymnasts (15.0 ± 1.8 yr.) and matched peers (15.1 ± 2.1 yr.) were recruited. The Sensory Organization Test (SOT) was administered with a concurrent lower-demand (serial subtraction of three, serving as the baseline) or higher-demand (serial subtraction of seven, serving as the dual-task) arithmetic task. The results showed no main effect of group, but a group by level of arithmetic task (P = 0.001) interaction effect on SOT equilibrium score. The higher-demand task facilitated balance performance in the gymnasts, but it impeded performance in the controls, with the differences more pronounced in challenging SOT conditions. With the higher-demand task, the gymnasts adopted a sensory strategy with a higher visual ratio but a smaller somatosensory ratio compared to the controls. Better visual utilisation of sensory organisation ability was apparent in gymnasts, but only when the SOT test was performed with a higher-demand secondary task. We have demonstrated the efficacy of using the dual-task paradigm to identify the superior sensory organisation ability of adolescent rhythmic gymnasts.  相似文献   

14.
Synchronised swimming involves a variety of sculling movements essential for body support and propulsion but its study is scarce. We aimed to biomechanically compare standard and contra-standard sculling techniques, and to observe the relationship between measures. Six synchronised swimmers performed two, 30 s maximal intensity, fully tethered standard and contra-standard sculling motions. Kinetic and kinematic data were obtained using a load-cell and underwater cameras, respectively. Force decreased along both techniques’ bouts, but no differences in-between techniques were noted for any kinetic variables. Standard sculling presented a higher cycle rate and a lower elbow mean angle than the contra-standard sculling (2.4 ± 0.3 vs. 2.0 ± 0.2 cycles/s and 134.1 ± 5.8 and 141.5 ± 4.7°, p < 0.05). In the standard sculling, by removing and maintaining the variation between participants (r w and r, respectively), the absolute mean force was directly related with cycle rate (r w  = 0.60) and wrist angular velocity during flexion (r = 0.82), while in the contra-standard condition the force was inversely associated with wrist mean angle (r = ?0.95) and directly with hand speed (r w  = 0.76), and elbow angular velocity (r w  ≈ 0.60). Therefore, technique learning and training require different attention by coaches and swimmers.  相似文献   

15.
The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s ( ± 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12° (p = 0.001) and 6.6° (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3°, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.  相似文献   

16.
Objective: Little is known about cognition’s effect on jump-landing movement patterns. Design: Participants completed three baseline cognitive tasks. Then, participants performed three jump-landing trials per condition (dual-task trials (DT)): Stroop Color Word test (SCWT), Symbol Digits Modalities test (SDMT), Brooks Visuospatial task (BVT), and no concurrent cognitive task (single-task). Main Outcome Measures: Total Landing Error Scoring System (LESS) scores were used to evaluate movement patterns. Participant’s reaction time (RT) for the jump-landing task was recorded. Results: LESS scores were not different between conditions (F3, 17 = 1.77, p = 0.16). RT was different between DT-SCWT and single-task (difference = ?0.107 sec, SD = 0.095) and DT-SDMT and single-task (difference = ?0.164 sec, SD = 0.245). Additionally, correctness on the BVT (t19 = 2.57, = 0.019) and SDMT (t19 = 2.93, = 0.009) decreased significantly during the dual-task condition relative to baseline task scores. Conclusion: Individuals slowed their RT and were less accurate on the cognitive task during a dual-task condition to create an appropriate jump-landing movement.  相似文献   

17.
Abstract

We assessed the agreement between maximal oxygen consumption ([Vdot]O2max) measured directly when performing the 20-m shuttle run test and estimated [Vdot]O2max from five different equations (i.e. Barnett, equations a and b; Léger; Matsuzaka; and Ruiz) in youths. The 20-m shuttle run test was performed by 26 girls (mean age 14.6 years, s = 1.5; body mass 57.2 kg, s = 8.9; height 1.60 m, s = 0.06) and 22 boys (age 15.0 years, s = 1.6; body mass 63.5 kg, s = 11.5; height 1.70 m, s = 0.01). The participants wore a portable gas analyser (K4b2, Cosmed) to measure [Vdot]O2 during the test. All the equations significantly underestimated directly measured [Vdot]O2max, except Barnett's (b) equation. The mean difference ranged from 1.3 ml · kg?1 · min?1 (Barnett (b)) to 5.5 ml · kg?1 · min?1 (Léger). The standard error of the estimate ranged from 5.3 ml · kg?1 · min?1 (Ruiz) to 6.5 ml · kg?1 · min?1 (Léger), and the percentage error ranged from 21.2% (Ruiz) to 38.3% (Léger). The accuracy of the equations available to estimate [Vdot]O2max from the 20-m shuttle run test is questionable at the individual level. Furthermore, special attention should be paid when comparisons are made between studies (e.g. population-based studies) using different equations. The results of the present study suggest that Barnett's (b) equation provides the closest agreement with directly measured [Vdot]O2max (cardiorespiratory fitness) in youth.  相似文献   

18.
This study sought to identify biomechanical factors that determine fast and skilful execution of the seoi-nage (shoulder throw) technique by comparing kinematics between elite and college judo athletes. Three-dimensional motion data were captured using a VICON-MX system with 18 cameras operating at 250 Hz as three male elite and seven male college judo athletes performed seoi-nage. No significant difference was found in motion phase time of the turning phase between the two groups, indicating that motion phase time is not necessarily a factor contributing quickness in seoi-nage. The maximum relative velocity of the whole body centre of mass along the anterior–posterior direction was significantly greater in the elite athletes (2.74 ± 0.33 m/s) than in the college athletes (1.62 ± 0.47 m/s) during the turning phase (p = 0.023). The overall angular velocity of the body part lines, particularly the arm line, tended to be greater in the elite athletes (p = 0.068). The results imply that the velocity of the thrower relative to the opponent in the forward drive and turning motion reflects high skill seoi-nage. Coaches should recognise the relative forward velocity as a factor that may contribute to a successful seoi-nage when teaching the judo throw technique.  相似文献   

19.
Team handball is a popular sport worldwide that requires numerous throws to be made throughout the course of a game. Because of the upper extremity demands of repetitive throwing, it is possible that fatigue can alter the mechanics of a shot. The purpose of this study was to determine the influence of localised fatigue on jump shot kinematics and kinetics. Eleven male team handball players (23.1 ± 3.1 years; 185.1 ± 8.3 cm; 89.7 ± 12.2 kg) volunteered. An electromagnetic tracking system was used to examine the jump shot prior to and following localised fatigue. The fatiguing protocol consisted of throwing a 2.2 kg medicine ball into a rebounder until volitional fatigue. No significant kinematic or kinetic differences were observed following fatigue. Shoulder external rotation was ?74.8 ± 14.9° prior to and ?79.0 ± 14.7° following fatigue at MER. Scapula, external rotation at ball release (BR) prior to fatigue was ?2.2 ± 7.0° and ?3.2 ± 11.1° following fatigue. Scapular internal rotation, at maximum shoulder internal rotation (MIR), changed from 18.4 ± 11.2° to 20.4 ± 11.8°. Ball velocity decreased from19.8 m · s–1 to 18.8 m · s–1 (P = 0.12). Accuracy percentage in the pre-fatigue trials was 60.8 ± 14.1% and 52.8 ± 12.7% following fatigue (P = 0.20). While no significant changes were observed, it is possible that other fatiguing protocols that more closely represent the aerobic and throwing demands of the sport may have a greater effect on the kinematics and kinetics of the jump shot.  相似文献   

20.
Recently, addition of a gymnastics glide kip to a standard pull-up (SPU) has resulted in the kipping pull-up (KPU). Changes in muscle activation and kinematics were evaluated with eleven athletes performing sets of 5 SPU and 5 KPU. Surface electromyography of upper body and lower body muscles was recorded along with movement kinematics obtained via markers and motion tracking software. Most kinematic variables were significantly higher in the KPU including (KPU minus SPU deg): Max hip angle (48.8° ± 6.8°, p < 0.001) and max knee angle (56.5° ± 11.3°, p < 0.001). The recruitment of core and lower body muscles was significantly higher in the KPU (% MVIC increase): rectus abdominis (28.7 ± 4.7%, p < 0.001), external oblique (21.8 ± 4.1%, p < 0.001), iliopsoas (26.1 ± 5.5%, p = 0.001) and tensor fasciae latae (13.5 ± 2.3%, p < 0.001). Correspondingly, the biceps brachii had lower activation in the KPU (% MVIC decrease): (26.7 ± 0.6%, p = 0.006). Depending on the athlete’s goal, they may elect to perform an SPU for higher upper body muscle activation; or the KPU for more full-body activation with the potential to perform more repetitions through reduced upper body fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号