首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the differences in mechanical power flow in early and late practice stages during a cyclic movement consisting of upper arm circumduction to clarify the change in mechanical energy use with skill acquisition. Seven participants practiced the task every other day until their joint angular movements conformed to those of an expert. During the practice sessions, participants' motions were digitally recorded once a week using four high-speed infrared cameras, and the joint kinematics and joint powers of the right arm were calculated. With practice, the inflow power derived from the net joint force increased at the hand, forearm, and upper arm segments by 143.1 +/- 17.2%, 57.1 +/- 7.3%, and 198.1 +/- 35.4%, respectively. In contrast, the power caused by the muscle joint moments was not significantly increased. These results suggested that participants acquired a motor pattern promoting transfer of the joint reaction forces. Results may provide some support for Bernstein's (1967) ideas that skill acquisition involves improving movement efficiency by greater use of nonmuscular forces.  相似文献   

2.
Spontaneous changes of movement patterns may allow to elucidate which criteria influence movement pattern preferences. However, the factors explaining the sit-stand transition in cycling are unclear. This study investigated if biomechanical and/or muscle activation cost functions could predict the power at which the spontaneous sit-stand transition occurs. Twenty-five participants performed an incremental test leading to the sit-to-stand transition, and subsequent randomized pedaling trials at 20 to 120% of the transition power in seated and standing position. A Moment Cost Function based on lower limbs net joint moments and two Electromyographic Cost Functions based on EMG data were defined. All cost functions increased with increasing crank power (p < 0.001) but at different rates in the seated and standing positions. They had lower values in the seated position below the transition power and lower values in the standing position above the transition power (p < 0.05). These results suggest that spontaneous change of position observed in cycling with increasing crank power represents an optimal choice to minimize muscular efforts. These results support the use of simple cost functions to define optimal settings in cycling and to assess the cost of cycling during short-term efforts.  相似文献   

3.
Due to the significant amount of time dancers spend on the forefoot, loads on the metatarsophalangeal joints are likely high, yet vary between dance movements. The purpose of this study was to compare joint motion and net joint moments at the metatarsophalangeal joints during three different dance movements ranging in demands at the foot and ankle joints. Ten healthy, female dancers (27.6 ± 3.2 years; 56.3 ± 6.9 kg; 1.6 ± 0.1 m) with an average 21.7 ± 4.9 years of dance training performed relevés (rising up onto the toes), sautés (vertical bipedal jumps), and saut de chat leaps (split jumps involving both vertical and horizontal components). Metatarsophalangeal joint kinematics and kinetics in the sagittal plane were calculated. Total excursion and peak net joint moments during rising or push-off were compared between the three dance movements. Greater extension of the metatarsophalangeal joints was seen during relevés compared to sautés or saut de chat leaps, and the largest metatarsophalangeal net joint moments were seen during saut de chat leaps. The metatarsophalangeal joints frequently and repetitively manage external loads and substantial metatarsophalangeal extension during these three dance movements, which may contribute to the high rate of foot and ankle injuries in dancers.  相似文献   

4.
The influence of preparation time on ankle joint biomechanics during highly dynamic movements is largely unknown. The aim of this study was to evaluate the impact of limited preparation time on ankle joint loading during highly dynamic run-and-cut movements. Thirteen male basketball players performed 45°-sidestep-cutting and 180°-turning manoeuvres in reaction to light signals which appeared during the approach run. Both movements were executed under (1) an easy condition, in which the light signal appeared very early, (2) a medium condition and (3) a hard condition with very little time to prepare the movements. Maximum ankle inversion angles, moments and velocities during ground contact, as well as EMG signals of three lower extremity muscles, were analysed. In 180°-turning movements, reduced preparation time led to significantly increased maximum ankle inversion velocities. Muscular activation levels, however, did not change. Increased inversion velocities, without accompanying changes in muscular activation, may have the potential to destabilise the ankle joint when less preparation time is available. This may result in a higher injury risk during turning movements and should therefore be considered in ankle injury research and the aetiology of ankle sprains.  相似文献   

5.
This study biomechanically quantified the movement patterns for six elite goalkeepers making diving saves to their preferred and non-preferred side at three different dive heights. Synchronised three-dimensional kinematic and kinetic biomechanical data analysis found diving direction to significantly (P < 0.05) influence the movement patterns of the diving save. The non-preferred side displayed greater lateral rotation of the pelvis and thorax at the initiation event. These over-rotational differences were reduced during the time on plate phase with the thorax displaying no significant difference at take-off; although a difference still remained for the pelvis. These over rotations were subsequently linked to greater peak knee joint moments, lower peak ankle joint moments, less hip extension at take-off, and for the centre of mass (COM) to travel slower and less directly to the ball, as measured by the net projection angle at take-off. These results indicate that joint movements in the transverse plane at or before the initiation event for the dive for the pelvis and thorax are the causation for subsequent asymmetries. These observed differences indicate that there is an advantage in having prior knowledge of limb preference in an opposing goalkeeper.  相似文献   

6.
ABSTRACT

A common practice in resistance training is to perform sets of exercises at, or close to failure, which can alter movement dynamics. This study examined ankle, knee, hip, and lumbo-pelvis dynamics during the barbell back squat under a moderate-heavy load (80% of 1 repetition maximum (1RM)) when performed to failure. Eleven resistance trained males performed three sets to volitional failure. Sagittal plane movement dynamics at the ankle, knee, hip, and lumbo-pelvis were examined; specifically, joint moments, joint angles, joint angular velocity, and joint power. The second repetition of the first set and the final repetition of the third set were compared. Results showed that while the joint movements slowed (p < 0.05), the joint ranges of motion were not altered There were significant changes in most mean joint moments (p < 0.05), indicating altered joint loading. The knee moment decreased while the hip and lumbo-pelvis moments underwent compensatory increases. At the knee and hip, there were significant decreases (p < 0.05) in concentric power output (p < 0.05). Whilst performing multiple sets to failure altered some joint kinetics, the comparable findings in joint range ofmotion suggest that technique was not altered. Therefore, skilled individuals appear to maintain technique when performing to failure.  相似文献   

7.
The purpose of this study is to examine the peak sagittal plane joint angles and joint moments of the lower extremity during the deep squat (DS) movement of the Functional Movement Screen (FMS) to assess differences between the classifications (1,2,3). Twenty-eight participants volunteered for the study and were screened to assess their FMS score on the DS task. All participants underwent a quantitative movement analysis performing the FMS DS movement at a self-selected speed. The participants in Group 3 exhibited greater dorsiflexion excursion compared to those in Group 1. Participants in Group 3 had greater peak knee flexion and knee flexion excursion than those in Group 2 who exhibited more than the participants in Group 1. Group 3 also exhibited a greater peak knee extension moment compared to Group 1. At the hip, Groups 3 and 2 exhibited greater peak hip flexion, hip flexion excursion and peak hip extension moment compared to Group 1. Thus, it appears that individuals who score differently on the deep squat as determined by the FMS exhibit differences in mechanics that may be beneficial in assessing strategies for interventions. Future research should assess how fundamental changes in mobility and stability independently affect DS performance.  相似文献   

8.
The purpose of this study is to examine the peak sagittal plane joint angles and joint moments of the lower extremity during the deep squat (DS) movement of the Functional Movement Screen (FMS) to assess differences between the classifications (1,2,3). Twenty-eight participants volunteered for the study and were screened to assess their FMS score on the DS task. All participants underwent a quantitative movement analysis performing the FMS DS movement at a self-selected speed. The participants in Group 3 exhibited greater dorsiflexion excursion compared to those in Group 1. Participants in Group 3 had greater peak knee flexion and knee flexion excursion than those in Group 2 who exhibited more than the participants in Group 1. Group 3 also exhibited a greater peak knee extension moment compared to Group 1. At the hip, Groups 3 and 2 exhibited greater peak hip flexion, hip flexion excursion and peak hip extension moment compared to Group 1. Thus, it appears that individuals who score differently on the deep squat as determined by the FMS exhibit differences in mechanics that may be beneficial in assessing strategies for interventions. Future research should assess how fundamental changes in mobility and stability independently affect DS performance.  相似文献   

9.
Abstract

The objectives of this study were to determine the impact of different instructional constraints on standing board jump (sbj) performance in children and understand the underlying changes in emergent movement patterns. Two groups of novice participants were provided with either externally or internally focused attentional instructions during an intervention phase. Pre- and post-test sessions were undertaken to determine changes to performance and movement patterns. Thirty-six primary fourth-grade male students were recruited for this study and randomly assigned to either an external, internal focus or control group. Different instructional constraints with either an external focus (image of the achievement) or an internal focus (image of the act) were provided to the participants. Performance scores (jump distances), and data from key kinematic (joint range of motion, ROM) and kinetic variables (jump impulses) were collected. Instructional constraints with an emphasis on an external focus of attention were generally more effective in assisting learners to improve jump distances. Intra-individual analyses highlighted how enhanced jump distances for successful participants may be concomitant with specific changes to kinematic and kinetic variables. Larger joint ROM and adjustment to a comparatively larger horizontal impulse to a vertical impulse were observed for more successful participants at post-test performance. From a constraints-led perspective, the inclusion of instructional constraints encouraging self-adjustments in the control of movements (i.e., image of achievement) had a beneficial effect on individuals performing the standing broad jump task. However, the advantage of using an external focus of attentional instructions could be task- and individual-specific.  相似文献   

10.
ABSTRACT

Full three-dimensional movements and external moments in golfers’ knees and the possible involvement in injuries have not been evaluated using motion capture at high sample frequencies. This study measured joint angles and external moments around the three anatomical axes in both knees of 10 professional golfers performing golf drives whilst standing on two force plates in a motion capture laboratory. Significant differences were found in the knee joint moments between the lead and trail limbs for the peak values and throughout all stages during the swing phase. A significantly higher net abduction moment impulse was seen in the trail limb compared with the lead limb (?0.518 vs. ?0.135 Nms.kg?1), indicating greater loading over the whole swing, which could contribute to knee lateral compartment or anterior cruciate ligament injuries. A significant correlation (= ?0.85) between clubhead speed at ball contact and maximum joint moment was found, with the largest correlations being found for joint moments at the top of the backswing event and at the end of the follow-through. Therefore, although knee moments can contribute to high clubhead speeds, the large moments and impulses suggest that they may also contribute to chronic knee injuries or exacerbate existing conditions.  相似文献   

11.
使用功能性动作筛查FMS对技巧啦啦操专项班28名学生进行测评,从整体趋势、性别差异、基本动作、项目特征等方面对筛查结果进行分析讨论。结果表明:学生关节的灵活性与稳定性功能、对称性出现问题;帮助教师发现专项学生身体关节、肌肉薄弱部位,纠正及强化训练以促进专项技术动作掌握和优化难度动作完成情况。  相似文献   

12.
The aim of the present study was to compare kinetically the roles of the lower extremities in generating trunk rotation in the tennis one-handed and two-handed backhand strokes. Fourteen male collegiate tennis players, seven with a preference for the one- and seven with a preference for the two-handed technique, were recruited as participants. The motion of each backhand stroke was filmed using two high-speed cine-cameras, and the ground reaction forces on the feet were measured separately using two force platforms to determine the joint moments and joint reaction forces at the hip, knee and ankle joints. A significant difference in hip joint moments between the two types of stroke was found in the phase from the start of forward rotation of the pelvis to the start of racket forward movement. For trunk rotation, the one-handed backhand players exerted a large joint moment in the front leg, whereas the two-handed backhand players exerted a large joint moment in the back leg. The exertion of a large hip joint moment in the latter stroke was comparable with the exertion in a forehand stroke reported previously.  相似文献   

13.
The aim of the present study was to compare kinetically the roles of the lower extremities in generating trunk rotation in the tennis one-handed and two-handed backhand strokes. Fourteen male collegiate tennis players, seven with a preference for the one- and seven with a preference for the two-handed technique, were recruited as participants. The motion of each backhand stroke was filmed using two high-speed cine-cameras, and the ground reaction forces on the feet were measured separately using two force platforms to determine the joint moments and joint reaction forces at the hip, knee and ankle joints. A significant difference in hip joint moments between the two types of stroke was found in the phase from the start of forward rotation of the pelvis to the start of racket forward movement. For trunk rotation, the one-handed backhand players exerted a large joint moment in the front leg, whereas the two-handed backhand players exerted a large joint moment in the back leg. The exertion of a large hip joint moment in the latter stroke was comparable with the exertion in a forehand stroke reported previously.  相似文献   

14.
Kinetics and kinematics analysis of incremental cycling to exhaustion   总被引:1,自引:0,他引:1  
Technique changes in cyclists are not well described during exhaustive exercise. Therefore the aim of the present study was to analyze pedaling technique during an incremental cycling test to exhaustion. Eleven cyclists performed an incremental cycling test to exhaustion. Pedal force and joint kinematics were acquired during the last three stages of the test (75%, 90% and 100% of the maximal power output). Inverse dynamics was conducted to calculate the net joint moments at the hip, knee and ankle joints. Knee joint had an increased contribution to the total net joint moments with the increase of workload (5-8% increase, p < 0.01). Total average absolute joint moment and knee joint moment increased during the test (25% and 39%, for p < 0.01, respectively). Increases in plantar flexor moment (32%, p < 0.01), knee (54%, p < 0.01) and hip flexor moments (42%, p = 0.02) were found. Higher dorsiflexion (2%, for p = 0.03) and increased range of motion (19%, for p = 0.02) were observed for the ankle joint. The hip joint had an increased flexion angle (2%, for p < 0.01) and a reduced range of motion (3%, for p = 0.04) with the increase of workload. Differences in joint kinetics and kinematics indicate that pedaling technique was affected by the combined fatigue and workload effects.  相似文献   

15.
The following research approximated how the central nervous system of Paralympic wheelchair athletes resolve kinematic redundancies during upper-limb movements. A multibody biomechanical model of a tetraplegic Paralympic athlete was developed using subject-specific body segment parameters. The angular joint kinematics throughout a specified Paralympic sport movement (i.e., wheelchair curling) were experimentally measured using inertial measurement units. The motor control system of the Paralympian was mathematically modelled and simulated using forward dynamics optimization. The predicted kinematics from different optimization objective functions (i.e., minimizing resultant joint moments, mechanical joint power, and angular joint velocities and accelerations) were compared with those experimentally measured throughout the wheelchair curling movement. Of the optimization objective functions under consideration, minimizing angular joint accelerations produced the most accurate predictions of the kinematic trajectories (i.e., characterized with the lowest overall root mean square deviations) and the shortest optimization computation time. The implications of these control findings are discussed with regards to optimal wheelchair design through predictive dynamic simulations.  相似文献   

16.
Knee flexor and extensor muscular assessment via isokinetic dynamometry is common practice and established in the research literature. However, reporting assessment methodology regarding reciprocal and nonreciprocal movements is often vague or absent. Such methodological issues are crucial for accurate assessments. Therefore, knee extensor and flexor peak moment using either reciprocal movement or nonreciprocal modalities was assessed. Fifteen participants performed three blocks of five concentric muscle actions at three angular velocities [1: nonreciprocal (maximal active flexion followed by passive extension); B2: reciprocal (maximal active extension followed by maximal active flexion); B3 nonreciprocal (maximal active extension followed by passive flexion)]. ANOVA revealed statistically significant within-subject modality effects for peak knee extensor moment and flexor velocity and modality differences (p < .05). Reciprocal and nonreciprocal assessments give significantly different results, with nonreciprocal giving higher peak moments. Reporting which modality is used is crucial to allow for greater clarity for the reader and practitioner.  相似文献   

17.
We investigated changes in movement kinematics and attentional focus when expert and novice golfers performed a golf-putting task under pressure. Six male professional golfers and five male novice golfers performed 100 acquisition trials, followed by 10 trials in the pressure condition with a performance-contingent cash reward and small audience. After the 10 trials in the pressure condition, participants answered a questionnaire concerning attentional focus during both types of trial, including such aspects as conscious control of movements and the effects of distraction. A pressure manipulation check revealed a modest increase in physiological arousal, in that heart rate increased by about 10 bpm although state anxiety did not increase. A two-dimensional analysis of movement kinematics revealed that the amplitudes of arm and club movements decreased on the backswing in the pressure condition. Arm and club movement speed decreased on the foreswing in both experts and novices. Furthermore, neither experts nor novices changed their attentional focus in the pressure condition. Whereas previous studies of "choking under pressure" focused on attentional changes, the kinematic changes found in the present study were possibly caused by the influences of strategy modification and/or emotional response. Choking phenomena can be explained by attentional changes, along with the influences of strategy modification and/or emotional response under pressure.  相似文献   

18.
The mechanical responses (i.e. external contact forces and external power) of 25 elite rowers to a race-pace rowing protocol were investigated on the traditional fixed stretcher mechanism and the more recently introduced free-floating stretcher mechanism rowing ergometers. Using a Rowperfect rowing ergometer for both conditions, external contact forces at the handle, stretcher and sliding seat, as well as the displacements of the handle and stretcher, were recorded. The external power was calculated as the product of the force and velocity data from both the handle and stretcher. Significant differences (P < 0.05) between the two conditions for each mechanical parameter were observed. The fixed condition showed larger maximum values for forces and external power and average power throughout the rowing cycle. Moreover, rowing with the fixed mechanism generated higher inertial forces during the transition between the propulsion and recovery phases, especially at the catch of the cycle. The results suggest that: (i) muscular coordination may differ according to the stretcher mechanism used, which could have an impact on the physiological adaptations of muscles; and (ii) the free-floating mechanism may induce lower catch and maximum values for net joint forces and net joint moments that could decrease the risk of injury.  相似文献   

19.
The objective of this study was to develop and evaluate a methodology for quantifying the contributions of modelling error terms, as well as individual joint torque, gravitational force and motion-dependent terms, to the generation of ground reaction force (GRF), whose true value can be measured with high accuracy using a force platform. Dynamic contributions to the GRF were derived from the combination of (1) the equations of motion for the individual segments, (2) the equations for constraint conditions arising from the connection of adjacent segments at joints, and (3) the equations for anatomical constraint axes at certain joints. The contribution of the error term was divided into four components caused by fluctuation of segment lengths, geometric variation in the constraint joint axes, and residual joint force and moment errors. The proposed methodology was applied to the running motion of thirteen rear-foot strikers at a constant speed of 3.3?m/s. Modelling errors arose primarily from fluctuations in support leg segment lengths and rapid movement of the virtual joint between the foot and ground during the first 20% of stance phase. The magnitudes of these error contributions to the vertical and anterior/posterior components of the GRF are presented alongside the non-error contributions, of which the joint torque term was the largest.  相似文献   

20.
The purpose of this study was to identify differences between volleyball and beach volleyball spike jump movements performed on an indoor surface and sand surface respectively. Eight elite male volleyball players performed spike jump movements on both surfaces. An eight-camera motion capturing system (250Hz) was used to generate 3D kinematic data. Seven groups of variables representing the kinematics of the centre of mass, the countermovement, the approach phase, and the angular amplitudes and maximal velocities of the lower and upper limbs were examined using Hotelling's T2(2). Significant differences were observed in the movement of the centre of mass (P < 0.05), the countermovement, the kinematics of the approach phase, and the angular amplitudes of the lower limbs. However, no significant differences were observed either in the maximal angular velocities of the lower and upper limbs, or in the amplitudes of the upper limb motion. In conclusion, the participants showed significant adaptation to changed movement conditions. As a result of the compliance of the sand surface, the participants slowed down their movements, especially during the phase of transition from knee flexion to extension and during the extension phase. Furthermore, the participants demonstrated changes in foot position to reach the greatest height possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号