共查询到20条相似文献,搜索用时 15 毫秒
1.
Immiscible aqueous phases, formed by dissolving incompatible solutes in water, have been used in green chemical synthesis, molecular extraction and mimicking of cellular cytoplasm. Recently, a microfluidic approach has been introduced to generate all-aqueous emulsions and jets based on these immiscible aqueous phases; due to their biocompatibility, these all-aqueous structures have shown great promises as templates for fabricating biomaterials. The physico-chemical nature of interfaces between two immiscible aqueous phases leads to unique interfacial properties, such as an ultra-low interfacial tension. Strategies to manipulate components and direct their assembly at these interfaces needs to be explored. In this paper, we review progress on the topic over the past few years, with a focus on the fabrication and stabilization of all-aqueous structures in a multiphase microfluidic platform. We also discuss future efforts needed from the perspectives of fluidic physics, materials engineering, and biology for fulfilling potential applications ranging from materials fabrication to biomedical engineering. 相似文献
2.
Viral infections remain a major threat to public health. The speed with which viruses are evolving drug-resistant mutations necessitates the further development of antiviral therapies with a large emphasis on drug discovery. To facilitate these efforts, there is a need for robust, high-throughput assays that allow the screening of large libraries of compounds, while enabling access to detailed kinetic data on their antiviral activity. We report here the development of a droplet-based microfluidic platform to probe viral fusion, an early critical step in infection by membrane-enveloped viruses such as HIV, Hepatitis C, and influenza. Using influenza A, we demonstrate the measurement of the kinetics of fusion of virions with target liposomes with sub-second temporal resolution. In analogy with acidification of the endosome that triggers fusion in a cellular context, we acidify the content of aqueous droplets containing virions and liposomes in situ by introducing acid from the dispersed phase and visualize the kinetics of fusion by using fluorescent probes. 相似文献
3.
Microfluidic techniques have been recently developed for cell-based assays. In microfluidic systems, the objective is for these microenvironments to mimic in vivo surroundings. With advantageous characteristics such as optical transparency and the capability for automating protocols, different types of cells can be cultured, screened, and monitored in real time to systematically investigate their morphology and functions under well-controlled microenvironments in response to various stimuli. Recently, the study of stem cells using microfluidic platforms has attracted considerable interest. Even though stem cells have been studied extensively using bench-top systems, an understanding of their behavior in in vivo-like microenvironments which stimulate cell proliferation and differentiation is still lacking. In this paper, recent cell studies using microfluidic systems are first introduced. The various miniature systems for cell culture, sorting and isolation, and stimulation are then systematically reviewed. The main focus of this review is on papers published in recent years studying stem cells by using microfluidic technology. This review aims to provide experts in microfluidics an overview of various microfluidic systems for stem cell research. 相似文献
4.
David W. Inglis 《Biomicrofluidics》2010,4(2)
Poly(dimethylsiloxane) or PDMS is an excellent material for replica molding, widely used in microfluidics research. Its low elastic modulus, or high deformability, assists its release from challenging molds, such as those with high feature density, high aspect ratios, and even negative sidewalls. However, owing to the same properties, PDMS-based microfluidic devices stretch and change shape when fluid is pushed or pulled through them. This paper shows how severe this change can be and gives a simple method for limiting this change that sacrifices few of the desirable characteristics of PDMS. A thin layer of PDMS between two rigid glass substrates is shown to drastically reduce pressure-induced shape changes while preserving deformability during mold separation and gas permeability. 相似文献
5.
Liquid dielectrophoresis (L-DEP), when deployed at microscopic scales on top of hydrophobic surfaces, offers novel ways of rapid and automated manipulation of very small amounts of polar aqueous samples for microfluidic applications and development of laboratory-on-a-chip devices. In this article we highlight some of the more recent developments and applications of L-DEP in handling and processing of various types of aqueous samples and reagents of biological relevance including emulsions using such microchip based surface microfluidic (SMF) devices. We highlighted the utility of these devices for on-chip bioassays including nucleic acid analysis. Furthermore, the parallel sample processing capabilities of these SMF devices together with suitable on- or off-chip detection capabilities suggest numerous applications and utility in conducting automated multiplexed assays, a capability much sought after in the high throughput diagnostic and screening assays. 相似文献
6.
7.
This paper reports the use of microfluidic approaches for the fabrication of yeastosomes (yeast-celloidosomes) based on self-assembly of yeast cells onto liquid-solid or liquid-gas interfaces. Precise control over fluidic flows in droplet- and bubble-forming microfluidic devices allows production of monodispersed, size-selected templates. The general strategy to organize and assemble living cells is to tune electrostatic attractions between the template (gel or gas core) and the cells via surface charging. Layer-by-Layer (LbL) polyelectrolyte deposition was employed to invert or enhance charges of solid surfaces. We demonstrated the ability to produce high-quality, monolayer-shelled yeastosome structures under proper conditions when sufficient electrostatic driving forces are present. The combination of microfluidic fabrication with cell self-assembly enables a versatile platform for designing synthetic hierarchy bio-structures. 相似文献
8.
Ultrafast microfluidics using surface acoustic waves 总被引:2,自引:0,他引:2
We demonstrate that surface acoustic waves (SAWs), nanometer amplitude Rayleigh waves driven at megahertz order frequencies propagating on the surface of a piezoelectric substrate, offer a powerful method for driving a host of extremely fast microfluidic actuation and micro∕bioparticle manipulation schemes. We show that sessile drops can be translated rapidly on planar substrates or fluid can be pumped through microchannels at 1–10 cm∕s velocities, which are typically one to two orders quicker than that afforded by current microfluidic technologies. Through symmetry-breaking, azimuthal recirculation can be induced within the drop to drive strong inertial microcentrifugation for micromixing and particle concentration or separation. Similar micromixing strategies can be induced in the same microchannel in which fluid is pumped with the SAW by merely changing the SAW frequency to rapidly switch the uniform through-flow into a chaotic oscillatory flow by exploiting superpositioning of the irradiated sound waves from the sidewalls of the microchannel. If the flow is sufficiently quiescent, the nodes of the transverse standing wave that arises across the microchannel also allow for particle aggregation, and hence, sorting on nodal lines. In addition, the SAW also facilitates other microfluidic capabilities. For example, capillary waves excited at the free surface of a sessile drop by the SAW underneath it can be exploited for micro∕nanoparticle collection and sorting at nodal points or lines at low powers. At higher powers, the large accelerations off the substrate surface as the SAW propagates across drives rapid destabilization of the drop free surface giving rise to inertial liquid jets that persist over 1–2 cm in length or atomization of the entire drop to produce 1–10 μm monodispersed aerosol droplets, which can be exploited for ink-jet printing, mass spectrometry interfacing, or pulmonary drug delivery. The atomization of polymer∕protein solutions can also be used for the rapid synthesis of 150–200 nm polymer∕protein particles or biodegradable polymeric shells in which proteins, peptides, and other therapeutic molecules are encapsulated within for controlled release drug delivery. The atomization of thin films behind a translating drop containing polymer solutions also gives rise to long-range spatial ordering of regular polymer spots whose size and spacing are dependent on the SAW frequency, thus offering a simple and powerful method for polymer patterning without requiring surface treatment or physical∕chemical templating. 相似文献
9.
Reginald Tran Byungwook Ahn David R. Myers Yongzhi Qiu Yumiko Sakurai Robert Moot Emma Mihevc H. Trent Spencer Christopher Doering Wilbur A. Lam 《Biomicrofluidics》2014,8(4)
Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries. 相似文献
10.
J. W. Parks M. A. Olson J. Kim D. Ozcelik H. Cai R. Carrion Jr. J. L. Patterson R. A. Mathies A. R. Hawkins H. Schmidt 《Biomicrofluidics》2014,8(5)
We describe the integration of an actively controlled programmable microfluidic sample processor with on-chip optical fluorescence detection to create a single, hybrid sensor system. An array of lifting gate microvalves (automaton) is fabricated with soft lithography, which is reconfigurably joined to a liquid-core, anti-resonant reflecting optical waveguide (ARROW) silicon chip fabricated with conventional microfabrication. In the automaton, various sample handling steps such as mixing, transporting, splitting, isolating, and storing are achieved rapidly and precisely to detect viral nucleic acid targets, while the optofluidic chip provides single particle detection sensitivity using integrated optics. Specifically, an assay for detection of viral nucleic acid targets is implemented. Labeled target nucleic acids are first captured and isolated on magnetic microbeads in the automaton, followed by optical detection of single beads on the ARROW chip. The combination of automated microfluidic sample preparation and highly sensitive optical detection opens possibilities for portable instruments for point-of-use analysis of minute, low concentration biological samples. 相似文献
11.
A porous silicon (PSi) based microarray has been integrated with a microfluidic system, as a proof of concept device for the optical monitoring of selective label-free DNA-DNA interaction. A 4 × 4 square matrix of PSi one dimensional photonic crystals, each one of 200 μm diameter and spaced by 600 μm, has been sealed by a polydimethylsiloxane (PDMS) channels circuit. The PSi optical microarray elements have been functionalized by DNA single strands after sealing: the microfluidic circuit allows to reduce significantly the biologicals and chemicals consumption, and also the incubation time with respect to a not integrated device. Theoretical calculations, based on finite element method, taking into account molecular interactions, are in good agreement with the experimental results, and the developed numerical model can be used for device optimization. The functionalization process and the interaction between DNA probe and target has been monitored by spectroscopic reflectometry for each PSi element in the microchannels. 相似文献
12.
Calcium carbonate (CaCO(3)) is one of the most abundant minerals and of high importance in many areas of science including global CO(2) exchange, industrial water treatment energy storage, and the formation of shells and skeletons. Industrially, calcium carbonate is also used in the production of cement, glasses, paints, plastics, rubbers, ceramics, and steel, as well as being a key material in oil refining and iron ore purification. CaCO(3) displays a complex polymorphic behaviour which, despite numerous experiments, remains poorly characterised. In this paper, we report the use of a segmented-flow microfluidic reactor for the controlled precipitation of calcium carbonate and compare the resulting crystal properties with those obtained using both continuous flow microfluidic reactors and conventional bulk methods. Through combination of equal volumes of equimolar aqueous solutions of calcium chloride and sodium carbonate on the picoliter scale, it was possible to achieve excellent definition of both crystal size and size distribution. Furthermore, highly reproducible control over crystal polymorph could be realised, such that pure calcite, pure vaterite, or a mixture of calcite and vaterite could be precipitated depending on the reaction conditions and droplet-volumes employed. In contrast, the crystals precipitated in the continuous flow and bulk systems comprised of a mixture of calcite and vaterite and exhibited a broad distribution of sizes for all reaction conditions investigated. 相似文献
13.
There are a plethora of approaches to construct microtissues as building blocks for the repair and regeneration of larger and complex tissues. Here we focus on various physical and chemical trapping methods for engineering three-dimensional microtissue constructs in microfluidic systems that recapitulate the in vivo tissue microstructures and functions. Advances in these in vitro tissue models have enabled various applications, including drug screening, disease or injury models, and cell-based biosensors. The future would see strides toward the mesoscale control of even finer tissue microstructures and the scaling of various designs for high throughput applications. These tools and knowledge will establish the foundation for precision engineering of complex tissues of the internal organs for biomedical applications. 相似文献
14.
We present a straightforward microfluidics system to achieve step-by-step reaction sequences in a diffusion-controlled manner in quasi two-dimensional micro-confinements. We demonstrate the hierarchical self-organization of actin (actin monomers—entangled networks of filaments—networks of bundles) in a reversible fashion by tuning the Mg2+ ion concentration in the system. We show that actin can form networks of bundles in the presence of Mg2+ without any cross-linking proteins. The properties of these networks are influenced by the confinement geometry. In square microchambers we predominantly find rectangular networks, whereas triangular meshes are predominantly found in circular chambers. 相似文献
15.
Oscillating electrowetting on dielectrics (EWOD) with coplanar electrodes is investigated in this paper as a way to provide efficient stirring within a drop with biological content. A supporting model inspired from Ko et al. [Appl. Phys. Lett. 94, 194102 (2009)] is proposed allowing to interpret oscillating EWOD-induced drop internal flow as the result of a current streaming along the drop surface deformed by capillary waves. Current streaming behaves essentially as a surface flow generator and the momentum it sustains within the (viscous) drop is even more significant as the surface to volume ratio is small. With the circular electrode pair considered in this paper, oscillating EWOD sustains toroidal vortical flows when the experiments are conducted with aqueous drops in air as ambient phase. But when oil is used as ambient phase, it is demonstrated that the presence of an electrode gap is responsible for a change in drop shape: a pinch-off at the electrode gap yields a peanut-shaped drop and a symmetry break-up of the EWOD-induced flow pattern. Viscosity of oil is also responsible for promoting an efficient damping of the capillary waves which populate the surface of the actuated drop. As a result, the capillary network switches from one standing wave to two superimposed traveling waves of different mechanical energy, provided that actuation frequency is large enough, for instance, as large as the one commonly used in electrowetting applications (f ∼ 500 Hz and beyond). Special emphasis is put on stirring of biological samples. As a typical application, it is demonstrated how beads or cell clusters can be focused under flow either at mid-height of the drop or near the wetting plane, depending on how the nature of the capillary waves is (standing or traveling), and therefore, depending on the actuation frequency (150 Hz–1 KHz). 相似文献
16.
Cytokines are small proteins secreted by leukocytes in blood in response to infections, thus offering valuable diagnostic information. Given that the same cytokines may be produced by different leukocyte subsets in blood, it is beneficial to connect production of cytokines to specific cell types. In this paper, we describe integration of antibody (Ab) microarrays into a microfluidic device to enable enhanced cytokine detection. The Ab arrays contain spots specific to cell-surface antigens as well as anti-cytokine detection spots. Infusion of blood into a microfluidic device results in the capture of specific leukocytes (CD4 T-cells) and is followed by detection of secreted cytokines on the neighboring Ab spots using sandwich immunoassay. The enhancement of cytokine signal comes from leveraging the concept of reconfigurable microfluidics. A three layer polydimethylsiloxane microfluidic device is fabricated so as to contain six microchambers (1 mm × 1 mm × 30 μm) in the ceiling of the device. Once the T-cell capture is complete, the device is reconfigured by withdrawing liquid from the channel, causing the chambers to collapse onto Ab arrays and enclose cell/anti-cytokine spots within a 30 nl volume. In a set of proof-of-concept experiments, we demonstrate that ∼90% pure CD4 T-cells can be captured inside the device and that signals for three important T-cell secreted cytokines, tissue necrosis factor-alpha, interferon-gamma, and interleukin-2, may be enhanced by 2 to 3 folds through the use of reconfigurable microfluidics. 相似文献
17.
18.
Raluca Ostafe Radivoje Prodanovic W. Lloyd Ung David A. Weitz Rainer Fischer 《Biomicrofluidics》2014,8(4)
A new ultra-high-throughput screening assay for the detection of cellulase activity was developed based on microfluidic sorting. Cellulase activity is detected using a series of coupled enzymes leading to the formation of a fluorescent product that can be detected on a chip. Using this method, we have achieved up to 300-fold enrichments of the active population of cells and greater than 90% purity after just one sorting round. In addition, we proved that we can sort the cellulase-expressing cells from mixtures containing less than 1% active cells.Cellulases are important enzymes with numerous applications across multiple industries, including biofuel, pulp, paper, textile and laundry, food, feed, brewing, and agriculture.1 Most cellulases have low activity and stability, so improving these properties would have substantial impact on numerous industrial processes.Enzymatic properties can be improved by protein engineering2 but the limiting step is the screening process. Classical screening uses microtiter plates (MTPs), where each well contains cells expressing a single type of mutant enzyme. However, this type of screening is the bottleneck in directed evolution, because a maximum number of 105 clones can be screened over the course of weeks or even months3 and large quantities of reagents and consumables are needed. High-throughput screening methods based on either fluorescence activated cell sorting (FACS)4–7 or microfluidic devices8 increase the number of clones that can be screened and reduce the amount of consumables required. Here, we demonstrate the use of a high-throughput screening system for cellulases by combining lab-on-chip sorting devices with an emulsion-based fluorescent assay previously developed for use in flow cytometry.5Water–in-oil emulsions are needed to maintain the connection between genotype and phenotype by compartmentalizing individual cells expressing a mutant enzyme together with the components of the fluorescence assay corresponding to the enzyme activity.7 For FACS, double emulsions (water-in-oil-in-water) are required because the instrument''s mobile phase is an aqueous solution. Such double emulsions can be produced by stirring or agitation,9,10 but the resulting emulsions are polydisperse and multiple water droplets may be scattered within a single oil droplet. In addition, large droplets tend to produce more fluorescence because there are more substrate molecules available for conversion into the fluorescent product. The emulsions are produced in bulk, so each droplet will be detected at a different time point from the start of the reaction. This means that increased fluorescence may result because an enzyme has worked on the substrate for a longer amount of time, and the fluorescence of the droplet may plateau before sorting as the enzyme consumes all the available substrate. Cell loading is difficult to control because the average number of cells per droplet scales with droplet volume. Also, if several inner droplets, containing cells with different activities, are encapsulated within the same outer droplet, false positives may occur upon sorting. Consequently, it is impossible to differentiate fluorescence changes due to enzyme activity from those due to other effects using polydisperse double emulsions in FACS, but it is possible to achieve plus/minus screening,4 separating cells with activity from those without.Droplet microfluidics overcomes many of the drawbacks of high-throughput enzyme sorting with FACS. Both the size and composition of the droplets can be tuned precisely. Furthermore, once the enzyme is mixed with the substrate, the incubation time can be controlled and all compartments will have the same conditions in terms of concentration and total number of substrate molecules. Although cell loading is still subject to Poisson statistics, the probability for cells to be loaded into a given droplet is the same and can be adjusted by tuning the input cell density. These characteristics make the microfluidic method more sensitive, flexible, and quantitative at detecting changes in enzyme activity than the FACS-based sorting of double emulsions.Here, we report a method in which droplet microfluidics is used to sort libraries containing different percentages of cells expressing cellulase activity and demonstrate enrichment of the cells expressing active cellulases. The entire process is summarized in Figure Figure11.Open in a separate windowFIG. 1.General overview of cellulase screening using droplet microfluidics. In the emulsification device, suspensions of yeast surface displayed libraries are co-flowed with the substrate solution at equal flow rates to a drop-forming junction where they mix. A stream of perfluorinated oil then breaks the aqueous mixture into monodisperse water-in-oil emulsions. Within each droplet, the cellulase reaction starts after compartmentalization and the fluorescent product is formed by a coupled enzymatic cascade in droplets containing cells that express the active enzyme. After a fixed incubation time, the emulsion droplets are re-injected into a microfluidic sorting device, where they are analyzed and sorted based on their fluorescence.To detect cellulase activity, we designed an assay that uses a chain of coupled enzymatic reactions to yield fluorescence corresponding to cellulase activity without needing artificial substrates (which may lead to confounding effects, such as improved binding of the enzyme specifically to the artificial compound but not the natural substrate). In this method, cellulase hydrolyzes cellulose, its natural substrate, into monosaccharides and oligosaccharides that are further detected by the enzymatic cascade5 (Figure (Figure11).Based on previous FACS experiments, no difference in activity can be detected between the positive and the negative droplets before 2 h incubation time.5 Based on these observations, we expected the cells to require more than 2 h of incubation in droplets for the reaction to develop.Emulsions were formed using a co-flow flow-focusing Polydimethylsiloxane device prepared by soft lithography as previously described8 and using fluorocarbon oil containing 1% (v/v) Krytox-PEG-Krytox detergent synthesized as reported in an earlier study.11,14 The solutions, one containing library cells (S. cerevisiae YPH500 cells, Agilent Technologies, Santa Clara, USA) and the other with the substrate,14 were mixed at the same flow rate, giving a one-to-one mixing ratio. The library cells were a defined mixture of cells transformed with cel5A pESC-Trp (positive cells) or empty pESC-Trp (negative cells). The two solutions therefore mixed just prior to encapsulation, minimizing the chance that fluorescent products would enter neighboring droplets. The substrate solution contained carboxymethyl cellulose (CMC), which has a high viscosity. To prevent fluctuations in the flow of substrate during the emulsification process, we optimized the flow rate and the concentration of CMC and found that a CMC concentration of 0.33% (w/v) produced monodisperse emulsions.We discovered that the HOx required for the enzymatic cascade causes droplet coalescence. HOx alone was sufficient to cause the observed change in droplet stability because droplets containing only hexose oxidase in buffer exhibited the same amount of coalescence as those containing the full set of assay components. We hypothesized that the enzyme might be surface active, disturbing the emulsion interface, but emulsions of an inactivated form of the enzyme were stable (Figure 2(a)). One possible explanation is that active HOx may interact with the detergent through the active site. Adding bovine serum albumin (BSA), which is known to have a stabilizing effect,12 to the mixture improved droplet stability (Figure 2(a)). Emulsions of the assay mixture with BSA were stable for more than 1 day at room temperature.Open in a separate windowFIG. 2.(a) Transmission light micrographs of water-in-perfluorinated-oil emulsions produced using the microfluidic emulsification devices after 2 h incubation at room temperature. The emulsions contain 3 U/ml HOx either in its native form (left image), inactivated by heating at 99 °C for 20 min (middle image), or supplemented with 1 mg/ml BSA (right image). (b) Images of the results of the agar plate Congo Red cellulase assay before and after sorting, with the percentage of positive colonies indicated. The cells expressing cellulase activity show clear hallos.The time required for the cellulase reaction to produce detectable quantities of fluorescent product was monitored using the droplet screening instrument. These devices proved to have a higher sensitivity than the FACS system because the optics are designed for the droplet size selected for the assay. We were able to detect cellulase activity just 20 min after the compartmentalization of cells. This shorter incubation time allowed us to couple the emulsification device directly to the droplet sorting device using a short piece of tubing. The rate of emulsion flow and the dimensions of the tube set the droplet incubation time.Using the optimized conditions, we used droplet microfluidics to sort cellulase-expressing cells from a set of reference libraries. The reference libraries were created by mixing different concentrations of positive S. cerevisiae YPH500 cells expressing Cel5A cellulase and negative S. cerevisiae YPH500 cells transformed with the pESC-Trp empty vector. The mixed populations were emulsified together with the assay components in water-in-perfluorinated-oil emulsions and incubated at room temperature for 20 min. The gated population was sorted and the cells were spread on yeast nitrogen base casaminoacids (YNB CAA) Glu agar plates. An aliquot of the reference library was also plated on agar plates prior to sorting. Approximately, 100 cells before and after sorting were transferred to YNB CAA CMC Gal/Raf induction plates, and the Congo red assay13 was used to detect cells expressing cellulase. In this assay, colonies of positive cells developed transparent halos around them.14 The results before and after sorting are presented in Figure 2(b).We enriched cellulase-expressing cells from a pool of negative cells, regardless of the starting concentration of positive cells. We were able to isolate the cellulase-expressing cells even when starting from a low percentage of active cells (0.1%). We obtained high enrichment factors of up to 300 when starting from low concentrations of positive cells, and we were able to sort to a purity of greater than 90%. These results exceed those obtained by comparable experiments using FACS.5In conclusion, we developed a high-throughput screening system for cellulase activity based on droplet microfluidics. We optimized the emulsification conditions to produce highly stable and monodisperse droplets. The low dispersity of the emulsion enables the sensitive, tunable, and quantitative detection of cellulase activity. In addition, we substantially reduced the reaction time needed for the development of a fluorescent product from 2 h to 20 min. As a result, we sorted reference libraries of cellulases with various ratios of positive to negative cells, and regardless of the starting population of positive cells we were always able to enrich the active population to a higher purity than that obtained by FACS. 相似文献
19.
Jiaqing Yu Ding Tao Ee Xing Ng Chester L. Drum Ai Qun Liu Chia-Hung Chen 《Biomicrofluidics》2014,8(5)
Thrombin, which has the leading role in the blood coagulation cascade, is an important biomarker in hemostasis and cardiovascular disease (CVD) development. In this study, a measurement system capable of continuously monitoring individual thrombin generation using droplet microfluidic technology is manipulated. The thrombin generation assay based on fluogenic substrate is performed within the droplets and the thrombin generation curve of plasma sample activated by tissue factor is measured in real-time to reflect the sample conditions dynamically. The injection of the inhibitor of thrombin generation is developed to assay the inhibited curve which relates to thrombin self-inhibition in biological systems. This microfluidic system is integrated with the microdialysis probe, which is useful to connect to the living animals for future in vivo real time thrombin measurements for rapid CVD diagnosis. 相似文献
20.
Focusing and sorting cells and particles utilizing microfluidic phenomena have been flourishing areas of development in recent years. These processes are largely beneficial in biomedical applications and fundamental studies of cell biology as they provide cost-effective and point-of-care miniaturized diagnostic devices and rare cell enrichment techniques. Due to inherent problems of isolation methods based on the biomarkers and antigens, separation approaches exploiting physical characteristics of cells of interest, such as size, deformability, and electric and magnetic properties, have gained currency in many medical assays. Here, we present an overview of the cell/particle sorting techniques by harnessing intrinsic hydrodynamic effects in microchannels. Our emphasis is on the underlying fluid dynamical mechanisms causing cross stream migration of objects in shear and vortical flows. We also highlight the advantages and drawbacks of each method in terms of throughput, separation efficiency, and cell viability. Finally, we discuss the future research areas for extending the scope of hydrodynamic mechanisms and exploring new physical directions for microfluidic applications. 相似文献