首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluid dynamics of mucus plug rupture is important to understand mucus clearance in lung airways and potential effects of mucus plug rupture on epithelial cells at lung airway walls. We established a microfluidic model to study mucus plug rupture in a collapsed airway of the 12th generation. Mucus plugs were simulated using Carbopol 940 (C940) gels at concentrations of 0.15%, 0.2%, 0.25%, and 0.3%, which have non-Newtonian properties close to healthy and diseased lung mucus. The airway was modeled with a polydimethylsiloxane microfluidic channel. Plug motion was driven by pressurized air. Global strain rates and shear stress were defined to quantitatively describe plug deformation and rupture. Results show that a plug needs to overcome yield stress before deformation and rupture. The plug takes relatively long time to yield at the high Bingham number. Plug length shortening is the more significant deformation than shearing at gel concentration higher than 0.15%. Although strain rates increase dramatically at rupture, the transient shear stress drops due to the shear-thinning effect of the C940 gels. Dimensionless time-averaged shear stress, Txy, linearly increases from 3.7 to 5.6 times the Bingham number as the Bingham number varies from 0.018 to 0.1. The dimensionless time-averaged shear rate simply equals to Txy/2. In dimension, shear stress magnitude is about one order lower than the pressure drop, and one order higher than yield stress. Mucus with high yield stress leads to high shear stress, and therefore would be more likely to cause epithelial cell damage. Crackling sounds produced with plug rupture might be more detectable for gels with higher concentration.  相似文献   

2.
Flows in complex geometries, such as porous media or biological networks, often contain plugs of liquid flowing within air bubbles. These flows can be modeled in microfluidic devices in which the geometric complexity is well defined and controlled. We study the flow of wetting liquid plugs in a bifurcating network of micro-channels. In particular, we focus on the process by which the plugs divide as they pass each bifurcation. The key events are identified, corresponding to large modifications of the interface curvature, the formation of new interfaces, or the division of a single interface into two new ones. The timing of the different events and the amplitude of the curvature variations are analyzed in view of the design of an event-driven model of flow in branching micro-networks. They are found to collapse onto a master curve dictated by the network geometry.  相似文献   

3.
Focusing cells into a single stream is usually a necessary step prior to counting and separating them in microfluidic devices such as flow cytometers and cell sorters. This work presents a sheathless electrokinetic focusing of yeast cells in a planar serpentine microchannel using dc-biased ac electric fields. The concurrent pumping and focusing of yeast cells arise from the dc electrokinetic transport and the turn-induced ac∕dc dielectrophoretic motion, respectively. The effects of electric field (including ac to dc field ratio and ac field frequency) and concentration (including buffer concentration and cell concentration) on the cell focusing performance were studied experimentally and numerically. A continuous electrokinetic filtration of E. coli cells from yeast cells was also demonstrated via their differential electrokinetic focusing in a serpentine microchannel.  相似文献   

4.
Liquid filling in microfluidic channels is a complex process that depends on a variety of geometric, operating, and material parameters such as microchannel geometry, flow velocity∕pressure, liquid surface tension, and contact angle of channel surface. Accurate analysis of the filling process can provide key insights into the filling time, air bubble trapping, and dead zone formation, and help evaluate trade-offs among the various design parameters and lead to optimal chip design. However, efficient modeling of liquid filling in complex microfluidic networks continues to be a significant challenge. High-fidelity computational methods, such as the volume of fluid method, are prohibitively expensive from a computational standpoint. Analytical models, on the other hand, are primarily applicable to idealized geometries and, hence, are unable to accurately capture chip level behavior of complex microfluidic systems. This paper presents a parametrized dynamic model for the system-level analysis of liquid filling in three-dimensional (3D) microfluidic networks. In our approach, a complex microfluidic network is deconstructed into a set of commonly used components, such as reservoirs, microchannels, and junctions. The components are then assembled according to their spatial layout and operating rationale to achieve a rapid system-level model. A dynamic model based on the transient momentum equation is developed to track the liquid front in the microchannels. The principle of mass conservation at the junction is used to link the fluidic parameters in the microchannels emanating from the junction. Assembly of these component models yields a set of differential and algebraic equations, which upon integration provides temporal information of the liquid filling process, particularly liquid front propagation (i.e., the arrival time). The models are used to simulate the transient liquid filling process in a variety of microfluidic constructs and in a multiplexer, representing a complex microfluidic network. The accuracy (relative error less than 7%) and orders-of-magnitude speedup (30 000X–4 000 000X) of our system-level models are verified by comparison against 3D high-fidelity numerical studies. Our findings clearly establish the utility of our models and simulation methodology for fast, reliable analysis of liquid filling to guide the design optimization of complex microfluidic networks.  相似文献   

5.
A new microfluidic method that allows hydrodynamic focusing in a microchannel with two sheath flows is demonstrated. The microchannel network consists of a T-shaped main channel and two T-shaped branch channels. The flows of the sample stream and the sheath streams in the microchannel are generated by electroosmotic flow-induced pressure gradients. In comparison with other flow focusing methods, this novel method does not expose the sample to electrical field, and does not need any external pumps, tubing, and valves.  相似文献   

6.
We demonstrate a valve-less microfluidic peristaltic pumping method which enables the delivery of continuous nanoliter-scale flow with high precision. The fluid is driven by squeezing the microchannels embedded in a poly(dimethylsiloxane) device with rolling cams or bearings. We achieve continuous and uniform flow with velocity range from 1 to 500 nl/s, with outflow volume error within 3 nl. The devices show enhanced backpressure resistance up to 340 kPa. This method also shows great flexibility. By altering the channels'' layout, emulsions and plugs can be generated easily. These low-cost and easy-to-fabricate micro-pumps offer novel approaches for liquid actuation in various microfluidic applications.  相似文献   

7.
Chen A  Pan T 《Biomicrofluidics》2011,5(4):46505-465059
Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego® building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.  相似文献   

8.
Zhu J  Xuan X 《Biomicrofluidics》2011,5(2):24111
The separation of particles from a heterogeneous mixture is critical in chemical and biological analyses. Many methods have been developed to separate particles in microfluidic devices. However, the majority of these separations have been limited to be size based and binary. We demonstrate herein a continuous dc electric field driven separation of carboxyl-coated and noncoated 10 μm polystyrene beads by charge in a double-spiral microchannel. This method exploits the inherent electric field gradients formed within the channel turns to manipulate particles by dielectrophoresis and is thus termed curvature-induced dielectrophoresis. The spiral microchannel is also demonstrated to continuously sort noncoated 5 μm beads, noncoated 10 μm beads, and carboxyl-coated 10 μm beads into different collecting wells by charge and size simultaneously. The observed particle separation processes in different situations are all predicted with reasonable agreements by a numerical model. This curvature-induced dielectrophoresis technique eliminates the in-channel microelectrodes and obstacles that are required in traditional electrode- and insulator-based dielectrophoresis devices. It may potentially be used to separate multiple particle targets by intrinsic properties for lab-on-a-chip applications.  相似文献   

9.
Over the course of last two decades, surface plasmon resonance (SPR) has emerged as a viable candidate for label-free detection and characterization for a large pool of biological interactions, ranging from hybridization of oligonucleotides to high throughput drug-screening. Conventional SPR bio-sensing involves a step-response method where the SPR sensorgram in response to a switched sequential flow of analyte and buffer is plotted in real-time and fitted to an exponential curve to extract the associative and dissociative reaction rates. Such measurement schemes involve continuous flow conditions where a substantial reagent volume is consumed and is subject to dispersive mixing at flow switching zones. In this paper, we demonstrate a new plug-train SPR technique in a microfluidic chip that separates and singulates solvent plugs in analyte and buffer by an immiscible air phase. Bio-samples are first discretized within plug droplets with volumes in order of few hundred nanoliters or less followed by pressure-driven transport onto SPR sensing sites of this hydrophobically modified SPR microdevise. The kinetic constants ka and kd for a model protein-small molecule interaction pair are extracted from a plug-train signal and are shown to be in reasonable agreement with our previous reports.  相似文献   

10.
Biomolecule gradients play an important role in the understanding of various biological processes. Typically, biological cells are exposed to linear and nonlinear concentration gradients and their response is studied for understanding cell growth, cell migration, and cell differentiation mechanisms. Recent studies have demonstrated the use of microfluidic devices for precise and stable concentration gradient generation. However, most of the reported devices are geometrically complex and lack dynamic controllability. In this work, a novel microfluidic gradient generator is presented which utilizes the induced charge electro-osmosis (ICEO) by introducing conducting obstacle in the microchannel. With the ICEO flow component, significant transverse convection can be generated within the microchannel, which can, in turn, be used to create nonlinear as well as asymmetric gradients. The characteristics of the developed concentration gradient are dependent on the interplay between fixed charge electro-osmotic and ICEO flows. It is shown that the proposed device can switch between linear and nonlinear gradients by just altering the applied electric field. Finally, the formation of user-defined concentration profiles (linear, convex, and concave) is demonstrated by varying the conducting obstacle size.  相似文献   

11.
A sequential and high-throughput single-cell manipulation system for a large volume of cells was developed and the successive manipulation for single cell involving single-cell isolation, individual labeling, and individual rupture was realized in a microhydrodynamic flow channel fabricated by using two-dimensional simple flow channels. This microfluidic system consisted of the successive single-cell handlings of single-cell isolation from a large number of cells in cell suspension, labeling each isolated single cell and the lysate extraction from each labeled single cell. This microfluidic system was composed of main channels, cell-trapping pockets, drain channels, and single-cell content collection channels which were fabricated by polydimethylsiloxane. We demonstrated two kinds of prototypes for sequential single-cell manipulations, one was equipped with 16 single-cell isolation pockets in microchannel and the other was constructed of 512 single-cell isolation pockets. In this study, we demonstrated high-throughput and high-volume single-cell isolation with 512 pocket type device. The total number of isolated single cells in each isolation pocket from the cell suspension at a time was 426 for the cell line of African green monkey kidney, COS-1, and 360 for the rat primary brown preadipocytes, BAT. All isolated cells were stained with fluorescence dye injected into the same microchannel successfully. In addition, the extraction and collection of the cell contents was demonstrated using isolated stained COS-1 cells. The cell contents extracted from each captured cell were individually collected within each collection channel by local hydrodynamic flow. The sequential trapping, labeling, and content extraction with 512 pocket type devices realized high-throughput single-cell manipulations for innovative single-cell handling, feasible staining, and accurate cell rupture.  相似文献   

12.
We developed a new method for releasing viable cells from affinity-based microfluidic devices. The lumen of a microchannel with a U-shape and user-designed microstructures was coated with supported lipid bilayers functionalized by epithelial cell adhesion molecule antibodies to capture circulating epithelial cells of influx solution. After the capturing process, air foam was introduced into channels for releasing target cells and then carrying them to a small area of membrane. The results show that when the air foam is driven at linear velocity of 4.2 mm/s for more than 20 min or at linear velocity of 8.4 mm/s for more than 10 min, the cell releasing efficiency approaches 100%. This flow-induced shear stress is much less than the physiological level (15 dyn/cm2), which is necessary to maintain the intactness of released cells. Combining the design of microstructures of the microfluidic system, the cell recovery on the membrane exceeds 90%. Importantly, we demonstrate that the cells released by air foam are viable and could be cultured in vitro. This novel method for releasing cells could power the microfluidic platform for isolating and identifying circulating tumor cells.  相似文献   

13.
Microrheometry is very important for exploring rheological behaviours of several systems when conventional techniques fail. Microrheometrical measurements are usually carried out in microfluidic devices made of Poly(dimethylsiloxane) (PDMS). Although PDMS is a very cheap material, it is also very easy to deform. In particular, a liquid flowing in a PDMS device, in some circumstances, can effectively deform the microchannel, thus altering the flow conditions. The measure of the fluid relaxation time might be performed through viscoelasticity induced particle migration in microfluidics devices. If the channel walls are deformed by the flow, the resulting measured value of the relaxation time could be not reliable. In this work, we study the effect of channel deformation on particle migration in square-shaped microchannel. Experiments are carried out in several PolyEthylene Oxyde solutions flowing in two devices made of PDMS and Poly(methylmethacrylate) (PMMA). The relevance of wall rigidity on particle migration is investigated, and the corresponding importance of wall rigidity on the determination of the relaxation time of the suspending liquid is examined.  相似文献   

14.
An electrochemical hexavalent chromium concentration sensor based on a microfluidic fuel cell is presented. The correlation between current density and chromium concentration is established in this report. Three related operation parameters are investigated, including pH values, temperature, and external resistance on the sensor performance. The results show that the current density increases with increasing temperature and the sensor produces a maximum regression coefficient at the catholyte pH value of 1.0. Moreover, it is found that the external resistance has a great influence on the linearity and current densities of the microfluidic sensor. Owing to the membraneless structure and the steady co-laminar flow inside the microchannel, the microfluidic sensor exhibits short response time to hexavalent chromium concentration. The laminar flow fuel cell sensor provides a new and simple method for detecting hexavalent chromium concentration in the industrial wastewater.  相似文献   

15.
Electrochemistry is a promising tool for microfluidic systems because it is relatively inexpensive, structures are simple to fabricate, and it is straight-forward to interface electronically. While most widely used in microfluidics for chemical detection or as the transduction mechanism for molecular probes, electrochemical methods can also be used to efficiently alter the chemical composition of small (typically <100 nl) microfluidic volumes in a manner that improves or enables subsequent measurements and sample processing steps. Here, solvent (H2O) electrolysis is performed quantitatively at a microchannel Pt band electrode to increase microchannel pH. The change in microchannel pH is simultaneously tracked at a downstream electrode by monitoring changes in the i-V characteristics of the proton-coupled electro-oxidation of hydroquinone, thus providing real-time measurement of the protonated forms of hydroquinone from which the pH can be determined in a straightforward manner. Relative peak heights for protonated and deprotonated hydroquinone forms are in good agreement with expected pH changes by measured electrolysis rates, demonstrating that solvent electrolysis can be used to provide tunable, quantitative pH control within a microchannel.  相似文献   

16.
A microfluidic dynamic fluorescence-activated interface control system was developed for lab-on-a-chip applications. The system consists of a straight rectangular microchannel, a fluorescence excitation source, a detection sensor, a signal conversion circuit, and a high-voltage feedback system. Aqueous NaCl as conducting fluid and aqueous glycerol as nonconducting fluid were introduced to flow side by side into the straight rectangular microchannel. Fluorescent dye was added to the aqueous NaCl to work as a signal representing the interface position. Automatic control of the liquid interface was achieved by controlling the electroosmotic effect that exists only in the conducting fluid using a high-voltage feedback system. A LABVIEW program was developed to control the output of high-voltage power supply according the actual interface position, and then the interface position is modified as the output of high-voltage power supply. At last, the interface can be moved to the desired position automatically using this feedback system. The results show that the system presented in this paper can control an arbitrary interface location in real time. The effects of viscosity ratio, flow rates, and polarity of electric field were discussed. This technique can be extended to switch the sample flow and droplets automatically.  相似文献   

17.
Ma D  Chen H  Li Z  He Q 《Biomicrofluidics》2010,4(4):44107
Cell culture and harvest are the most upstream operation for a completely integrated cell assay chip. In our previous work, thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) was successfully grafted onto polydimethylsiloxane (PDMS) surface via benzophenone-initiated photopolymerization. In the present work, the PNIPAAm-grafted-PDMS (PNIPAAm-g-PDMS) surface was explored for thermomodulated cell culture and noninvasive harvest in microfluidic channels. Using COS 7 fibroblast from African green monkey kidney as the model cells, the thermomodulated adhering and detaching behaviors of the cells on the PNIPAAm-g-PDMS surfaces were optimized with respect to PNIPAAm-grafting yields and gelatin modification. The viability of the cells cultured on and harvested from the PNIPAAm-g-PDMS surface with the thermomodulated noninvasive protocol was estimated against the traditional cell culture∕harvest method involving trypsin digestion. The configuration of the microchannel on the PNIPAAm-g-PDMS chip was evaluated for static cell culture. Using a pipette-shaped PNIPAAm-g-PDMS microchannel, long-term cell culture could be achieved at 37 °C with periodic change of the culture medium every 12 h. After moving the microchip from the incubator set at 37 °C to the room temperature, the proliferated cells could be spontaneously detached from the PNIPAAm-g-PDMS surface of the upstream chamber and transferred by a gentle fluid flow to the downstream chamber, wherein the transferred cells could be subcultured. The thermomodulated cell culture, harvest, and passage operations on the PNIPAAm-g-PDMS microfluidic channels were demonstrated.  相似文献   

18.
Bistability in droplet traffic at asymmetric microfluidic junctions   总被引:1,自引:0,他引:1  
We present the first experimental demonstration of confined microfluidic droplets acting as discrete negative resistors, wherein the effective hydrodynamic resistance to flow in a microchannel is reduced by the presence of a droplet. The implications of this hitherto unexplored regime in the traffic of droplets in microfluidic networks are highlighted by demonstrating bistable filtering into either arm of symmetric and asymmetric microfluidic loops, and programming oscillatory droplet routing therein.  相似文献   

19.
To sequentially handle fluids is of great significance in quantitative biology, analytical chemistry, and bioassays. However, the technological options are limited when building such microfluidic sequential processing systems, and one of the encountered challenges is the need for reliable, efficient, and mass-production available microfluidic pumping methods. Herein, we present a bubble-free and pumping-control unified liquid handling method that is compatible with large-scale manufacture, termed multilayer microfluidic sample isolated pumping (mμSIP). The core part of the mμSIP is the selective permeable membrane that isolates the fluidic layer from the pneumatic layer. The air diffusion from the fluidic channel network into the degassing pneumatic channel network leads to fluidic channel pressure variation, which further results in consistent bubble-free liquid pumping into the channels and the dead-end chambers. We characterize the mμSIP by comparing the fluidic actuation processes with different parameters and a flow rate range of 0.013 μl/s to 0.097 μl/s is observed in the experiments. As the proof of concept, we demonstrate an automatic sequential fluid handling system aiming at digital assays and immunoassays, which further proves the unified pumping-control and suggests that the mμSIP is suitable for functional microfluidic assays with minimal operations. We believe that the mμSIP technology and demonstrated automatic sequential fluid handling system would enrich the microfluidic toolbox and benefit further inventions.  相似文献   

20.
Field-free particle focusing in microfluidic plugs   总被引:1,自引:0,他引:1  
Kurup GK  Basu AS 《Biomicrofluidics》2012,6(2):22008-2200810
Particle concentration is a key unit operation in biochemical assays. Although there are many techniques for particle concentration in continuous-phase microfluidics, relatively few are available in multiphase (plug-based) microfluidics. Existing approaches generally require external electric or magnetic fields together with charged or magnetized particles. This paper reports a passive technique for particle concentration in water-in-oil plugs which relies on the interaction between particle sedimentation and the recirculating vortices inherent to plug flow in a cylindrical capillary. This interaction can be quantified using the Shields parameter (θ), a dimensionless ratio of a particle’s drag force to its gravitational force, which scales with plug velocity. Three regimes of particle behavior are identified. When θ is less than the movement threshold (region I), particles sediment to the bottom of the plug where the internal vortices subsequently concentrate the particles at the rear of the plug. We demonstrate highly efficient concentration (∼100%) of 38 μm glass beads in 500 μm diameter plugs traveling at velocities up to 5 mm/s. As θ is increased beyond the movement threshold (region II), particles are suspended in well-defined circulation zones which begin at the rear of the plug. The length of the zone scales linearly with plug velocity, and at sufficiently large θ, it spans the length of the plug (region III). A second effect, attributed to the co-rotating vortices at the rear cap, causes particle aggregation in the cap, regardless of flow velocity. Region I is useful for concentrating/collecting particles, while the latter two are useful for mixing the beads with the solution. Therefore, the two key steps of a bead-based assay, concentration and resuspension, can be achieved simply by changing the plug velocity. By exploiting an interaction of sedimentation and recirculation unique to multiphase flow, this simple technique achieves particle concentration without on-chip components, and could therefore be applied to a range of heterogeneous screening assays in discrete nl plugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号