首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重视变式训练 激活思维能力--一类不等式问题的统一解法   总被引:1,自引:0,他引:1  
1 问题的出现已知x、y∈(0 ,+∞) ,且x+2 y=1,求1x +1y的最小值.学生甲:∵x >0 ,y>0x +1x ≥2 ,2 y+1y ≥2 2 ,∴x+2 y+1x +1y ≥2 +2 2 .∵x +2 y=1,∴1x +1y ≥1+2 2故1x +1y 的最小值为1+2 2 .学生乙:∵x >0 ,y>01=x+2 y≥2 x·2 y,∴xy≤18.因此 1x +1y ≥2 1xy ≥2 8=4 2 .故1x +1y 的最小值为4 2 .以上是学生解这道题目时的两种典型错解,错误的根源在于多次使用了均值不等式,而等号不能同时取到.2 问题的解决本题的条件是正数x、y的一次齐次式等于常数,即x+2 y=1,要求最小值的式子的分母是关于x和y的一次多项式,如果能把1x +1y 化…  相似文献   

2.
刘长柏 《高中生》2009,(16):6-7
1.直线4x+3y=40与圆x2+y2=100的位置关系是A.相交B.相切C.相离D.无法确定2.经过点M(2,1)作圆x2+y2=5的切线,则切线方程是A.姨2x+y-5=0B.姨2x+y+5=0C.2x+y-5=0D.2x+y+5=03.直线y=x-1上的点到圆x2+y2+4x-2y+4=0的最短距离为  相似文献   

3.
在解不等式问题时 ,调整系数、拆项、补项是常用技巧 .但调整系数、拆项、补项时 ,既要考虑不等式的结构 ,又要符合相关要求 ,难以直接确定 .此时若用待定系数法 ,就可兼顾几方面要求 ,只需求出待定系数就行了 .例 1 已知 :1≤ 3x+2 y≤ 3,2≤ x+3y≤5 ,求 5 x+8y的取值范围 .分析 用 3x+2 y及 x+3y将 5 x+8y表示出来是解题的关键 .设 5 x+8y=m(3x+2 y) +n(x+3y) =(3m+n) x+(2 m+3n) y(m,n为待定系数 ) .由 3m+n=5 ,2 m+3n=8,解得 m=1,n=2 .解  5 x+8y=(3x+2 y) +2 (x+3y) ,∵ 2≤x+3y≤ 5 ,∴ 4≤ 2 (x+3y)≤ 10 .又 1≤ 3x+2 y≤ 3,∴ …  相似文献   

4.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )=1 ,那么 x+ y=0 .分析 注意到式子 x+ x2 + 1 ,y+y2 + 1的结构完全相同 ,我们引进函数f( x) =x+ x2 + 1 .容易知道函数 f( x)具有以下性质 :1 f( x) f( - x) =1 ;2 f( x)在定义域 R上是增函数 .(对于性质 2 ,只需把 f ( x1 ) - f ( x2 )化为 ( x1 - x2 ) x21 + 1 + x22 + 1 + x1 + x2x21 + 1 + x22 + 1,利用 x21 + 1 + x22 + 1 + x1 + x2 >| x1 | + | x2 |+ x1 + x2 ≥ 0即可证得 .)显然 ,原竞赛题就是证明 :如果 f ( x) f ( y) =1 ,那么 x+ y=0 .现在简证如…  相似文献   

5.
基础篇课时一 一次方程组有关概念及解法诊断练习一、填空题1.在方程:xy=4,x+y=2,x2-y=3,x+y=z,x+1y=1中,属于二元一次方程的是.2.方程3x+2y=-1的一个解中x=2,则这个解中y=.3.已知方程12x-13y=1,用含x的代数式表示y=.4.在求解二元一次方程组x=2y,2x-3y=4时,用的方法消去未知数x简便,消去未知数x后,就把问题转化为问题.二、选择题1.若关于x,y的二元一次方程2kx+y=1的解是x=2,y=-7.则k的值为(  )(A)4. (B)2. (C)3. (D)-2.2.下列方程组中是二元一次方程组的是(  )(A)x+y=1,xy=3.  (B)3x+y=2,2y+z=5.(C)x+3y=4,x+1y=3.(D)x=3,2x-3…  相似文献   

6.
周周练     
第一周二元一次方程组与代入法求解A组一、填空题1.叫二元一次方程,5x-2y=0的解有组.2.对于方程4x+y=3,用x的代数式表示y的结果是;对于方程3x+2y=1,用y的代数式表示x的结果是.3.若x3m-3-2yn-1=5是二元一次方程,则m=,n=.4.二元一次方程4x+y=20的所有正整数解有组5.已知x=2y=-1是方程组4mx-x+y=132x-ny+1=2的解,则2m+3n的值等于.6.已知一4xm+nym-n与23x7-my1+n是同类项,则m=,n=.7.x=2,y=1是方程(ax-by-1)2+|x+by-5|=0的一组解,则a=,b=.8.若方程组x-my=02x+3y=7的解也是方程x-y=1的解,则m=.二、选择题1.方程x-4y=1;x2+y=0;y+z=0;xy=1;x-2y3+y=…  相似文献   

7.
有些同学在做不等式的习题时,曾因一道题目的两种不同解法而争论不休,现把他们的解法原原本本地写下,仔细分析一下,以防再犯类似错误.题目:设x、yR+且x+2y=1,求1x+1y的最小值.解法一:∵x,yR+且x+2y=1∴1=x+2y叟22xy姨穴1雪即xy燮18,从而1xy姨叟8姨=22姨(2)∴1x+1y叟21xy姨=21xy姨∴1x+1y叟2×22姨=42姨,∴1x+1y的最小值为42姨.解法二:∵x,yR+且x+2y=1∴1x+1y=x+2yx+x+2yy=3+2yx+xy叟3+22yxxy姨=3+22姨∴1x+1y的最小值为3+22姨.以上两种解法看似都正确,其实不然.解法一是错的,而解法二是对的.那么解法一究竟错在哪里呢?还是让我们回…  相似文献   

8.
一、构造方程例1已知a,b缀R,且a3+b3=2,求a+b的最大值.解设a+b=t,则a3+b3=(a+b)(a2-ab+b2)=t(t2-3ab)=2,即ab=t3-23t,所以a,b是方程x2-tx+t3-23t=0的两实根.故驻=t2-4×t3-23t≥0.解得0相似文献   

9.
因式分解的方法较多,同学们除了牢固掌握课本上介绍的提公因式法,运用公式法,分组分解法和十字相乘法四种基本方法外,还可以学习如下几种变换技巧.一、拆项变换例1分解因式:3x3+7x2-4.分析:先将7x2拆成两个同类项3x2和4x2,然后再用分组分解法分解.解:原式=(3x3+3x2)+(4x2-4)=3x2(x+1)+4(x2-1)=3x2(x+1)+4(x+1)(x-1)=(x+1)(3x2+4x-4)=(x+1)(x+2)(3x-2)二、添项变换例2分解因式:x4+y4+(x+y)4.分析:此式是关于x、y的对称式,故可通过添项把原式化为仅含x+y和xy的式子.解:原式=x4+2x2y2+y4-2x2y2+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2…  相似文献   

10.
正(2012年高考山东卷·理12)设函数f(x)=1x,g(x)=ax2+bx(a,b∈R,且a≠0)若y=f(x)的图像与y=g(x)图像有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a0时,x1+x20,y1+y20B.当a0时,x1+x20,y1+y20C.当a0时,x1+x20,y1+y20D.当a0时,x1+x20,y1+y20分析一:令a=-2,b=3,1x=-2x2+3x,因式分解-(x-  相似文献   

11.
笔者近日在学习和研究圆锥曲线时,发现圆锥曲线与其切线有关的一个优美的性质,现表述如下,以期与同仁分享. 性质1 已知A,B是椭圆C:x2/a2+y2/b2=1(a>b>0)上不同的两点(不同时在坐标轴上,或kOA·kOB≠-b2/a2),O为椭圆C的中心,椭圆C在点A,B处的切线分别与直线OB,OA相交于P,Q两点.则AB∥PQ. 证明:如图1,设A(x1,y1),B(x2,y2).则切线AP,BQ的方程分别为:x1x/a2+y1y/b2=1,x2x/a2+y2y/b2=1.直线OA,OB的方程分别为:y=y1/x1x,y=y2/x2x由方程组{x2x/a2+y2y/b2=1 y=y1/x1x,解得点Q的坐标为xQ=a2+b2+x1/b2x1x2+a2y1y2,yQ=a2+b2+y1/b2x1x2+a2y1y2.  相似文献   

12.
一、要注意不等式成立的条件例1已知x,y缀R+,且1x+4y=1,求x+y的最小值.错解∵x,y∈R+,∴0<1x·4y≤眼12穴1x+4y雪演2=14,即xy≥16.∴x+y≥2xy姨≥216姨=8,∴x+y的最小值是8.分析上面解法中,连续进行了两次不等式变形:x+y≥2xy姨与2xy姨≥216姨,且这两个不等式中的等号不能同时成立.因为第一个不等式当且仅当x=y时等号成立,第二个不等式当且仅当1x=4y时等号成立,即只有x=2且y=8时等号成立.因此,x+y不可能等于8.正解∵1x+4y=1,∴x+y=(x+y)·穴1x+4y雪=yx+4xy+5≥2×yx·4xy姨+5=9.上式当且仅当yx=4xy,即y=2x时等号成立.将1x+4y=1与y=2x联立,…  相似文献   

13.
在含有两个字母x、y的多项式中,如果同时以x代替y,y代替x后,得到的多项式与原来的多项式完全相同,那么称这个多项式是关于x、y的对称多项式.容易发现关于x、y的对称多项式都可以表示成关于x+y和xy的式子,如x2+y2=(x+y)2-2xy、y x+x y=x2+y2xy=(x+y)2-2xy xy等等,利用对称多项式这一性质,我们可以智取二次根式的有关求值问题.例1.已知x=3姨+1、y=姨3-1,求x2+2xy+y2的值.分析:如果直接将x、y的值代入计算  相似文献   

14.
文 [1]用函数性质证明了第 31届西班牙数学奥林匹克第 31题 :如果 (x+x2 +1) (y+y2 +1) =1,那么 x+y=0 .该题可作如下的推广 :如果 (x+x2 +m) (y+y2 +m) =m,其中 m∈ (0 ,+∞ ) ,那么 x+y=0 .下面用构造法给出简证 .思路 1——构造对偶式证明 1 由已知 ,m>0 ,(x+x2 +m ) (y+y2 +m) =m,1令 (x- x2 +m) (y- y2 +m) =n,21× 2得 (- m) (- m) =mn,∴ n=m,即有 (x- x2 +m) (y- y2 +m) =m.3由 1得 x+x2 +m=my+y2 +m=- (y- y2 +m) . 4由 3得 x - x2 +m =my- y2 +m=- (y+y2 +m) . 54 +5得 2 x=- 2 y,∴x+y=0 .思路 2——构造等比数列证明 2  m >0 …  相似文献   

15.
例已知关于x,y的方程组{x-y=m,2x+y=m+1.的解满足x+y=2,求m的值.解法1解关于x,y的方程组{x-y=m,2x+y=m+1得{x=(2m+1)/3,y=(-m+1)/3.代入x+y=2,得  相似文献   

16.
最近,我听了一位教师课题为《曲线方程的求法》的一节课.其中一道例题:求圆心在(2,1),且与x2+y2?3x=0的公共弦所在直线过点(5,?2)的圆的方程.解由已知可设圆的方程为x2+y2?4x?2y+F=0.(1)又x2+y2?3x=0,(2)(1)?(2)得?x?2y+F=0.而直线?x?2y+F=0过点(5,?2),把(5,?2)代入?x?2y+F=0,得F=1.因此所求圆的方程为:x2+y2?4x?2y+1=0.评课会上,有人提出:(1)?(2)所得?x?2y+F=0一定是相交弦吗?若不是,它又是什么呢?本文就此展开讨论.不失一般性,设两个不同的圆22O1:x+y+D1x+E1y+F1=022(D1+E1?4F1>0).(3)22O2:x+y+D2x+E2y+F2=022(D2+E2?4F2>0).(4)(3…  相似文献   

17.
题目 设x≥1,y≥1,证明:x+y+1/xy≤1/x+1/y+xy. 这是2011年高考安徽卷理科第19题,本文给出该不等式的两种证法并对不等式进行推广,与大家交流分享. 证法1:右边减去左边得1/x+1/y+xy-x-y-1/xy=y+x+x2y2-x2y-xy2-1/xy,将分子以x为主元整理得y(y-1)x2+(1-y2)x+y-1,即(y-1)(x-1)(xy-1),因为x≥1,y≥1,所以(y-1)(x-1)(xy-1)≥0,故1/x+1/y+xy-x-y-1/xy≥0,即x+y+1/xy≤1/x+1/y+xy,当且仅当x=1或y=1时等号成立.  相似文献   

18.
最值问题一直是各类考试的热点,也是学生学习的难点,对条件可化为两个非负数和为1的最值问题可以用三角换元法简洁、明了地解决. 问题 若实数x,y满足x2+y2+xy=1,x+y的最大值是_________. 分析 由条件,原式可化为(x+y/2)2+3/4y2=1,令x+1/2y=cosα,且2√3/2y=sinα,1 则x+y=1√3sinα+cosα=2√3/2sin(α+θ).所以,x+y的最大值是 2√3/2.  相似文献   

19.
(时间:90分钟满分:100分)一、填空题(每小题3分,共30分)1.若点P(x,y)的坐标满足(x+1)2+y-3√=0,则点P关于原点的对称点P'的坐标是.2.函数y=x-1√2-x√中的x的取值范围是.3.若y-3与x成正比例,当x=2时,y=7,则y与x之间的函数关系式是.4.若y=(m2+m)xm-2m-1是二次函数,则m=.5.抛物线y=-2x2+8x-6的开口方向是,顶点的坐标是.6.若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b=.7.若抛物线y=x2+ax-3的对称轴是y轴,则a=.8.设反比例函数y=-3x中x的取值范围是1≤x≤3,则变量y的最大值是.9.二次函数y=ax2+bx+c的图象如图1所示,22则一次函数y=-acx+b的…  相似文献   

20.
联想是以观察为基础,对研究的对象或问题,联想已有的知识和经验进行形象思维的方法.通过联想,构造相应的条件,从而解决问题.【例】 设x、y∈R+,且x+y=1,求证:(x+2)2+(y+2)2≥252.联想一:巧用“a2+b2≥2ab”法1:直接法由x+y=1,得(x+2)2+(y+2)2=x2+y2+4x+4y+8=(x+y)2+4(x+y)+8-2xy=13-2xy又∵x、y∈R+,由均值不等式,∴x+y≥2xy,即xy≤14,则-2xy≥-12.故(x+2)2+(y+2)2=13-2xy≥13-12=252.证毕.法2:间接法令a=x+2,b=y+2,则a+b=(x+2)+(y+2)=x+y+4=5(定值)∵a2+b2≥2ab,两边同时加上a2+b2得a2+b2≥(a+b)22即(x+2)2+(y+2)2≥[(x+2)+(y+2)]22=252.…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号